首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The fluid transfer of radionuclides in the geologic medium is considered under conditions when radionuclides are contained in fluids not only as solutes but also as colloids. The effect of colloidal transport of radionuclides on the rate of spreading of radioactive contamination in an underground medium is estimated, with assessment of this effect in mathematical models describing the transport of radionuclides by subsurface water. For this purpose, the exchange of radionuclides between subsurface water, colloid, and an immobile solid phase is considered, taking into account the precipitation of colloidal particles on both the immobile solid phase and other colloidal particles and their recurrent mobilization into the liquid phase. It is noted that, in real colloidal transfer, the heterogeneity of the geologic medium and colloidal particles in subsurface water is of great importance. The known models of colloidal transfer of radionuclides are evaluated on the basis of the analysis performed.  相似文献   

2.
The spread of radioactive contamination in the subsurface medium near Lake Karachai is considered. The complexity of this process requires a comprehensive approach to its study. The source of radioactive contamination is overviewed. The map of faults in subsurface medium is considered in order to determine the prevailing direction of contaminated groundwater flow. Photometry in observation wells has been used for structural geological estimation of transport properties of the shallow aquifer, where contaminated groundwater is moving. This study was carried out along with hydrochemical logging, which makes it possible to estimate the dynamics of contamination of subsurface medium and vertical distribution of groundwater contamination. Special attention is paid to transport of radionuclides in the form of radiocolloid particles. Groundwater samples were taken from various depths corresponding to different contamination levels near Lake Karachai. The depth intervals of sampling were determined from the data of hydrochemical logging. Ultrafiltration through membranes with a specific pore size in combination with gamma spectrometry was used to characterize radionuclide transfer with colloidal particles differing in size. The local elemental composition of the radiocolloid surface was studied by Auger spectroscopy. The chemical composition and structure of radiocolloid particles were determined by X-ray photoelectron spectroscopy with consecutive etching of the particle surface by argon ions for a certain depth. The data obtained indicate that radiocolloid particles are heterogeneous and an organic shell consisting of humic and fulvic acids and technogenic organic compounds coat their surface.  相似文献   

3.
The colloidal fractions of various particle sizes were separated from the samples of groundwater in the area of radioactive contamination nearby Obninsk (Kaluga region, Russia). The primary component of the radioactive contamination is 90Sr isotope. The colloidal particles were separated from the samples of groundwater by means of ultrafiltration through membranes of 200, 100, and 25 nm pore sizes. The chemical composition of particle surfaces in each of the fractions was determined using X-ray photoelectron spectroscopy. The structure of particles was determined by the changes in the surface composition after the removal of outer layers of particles by etching with argon ions to a depth of 100 Å. It was found that the particles are constituted by inorganic cores mainly of montmorillonite and iron metahydroxide and a broken covering of humic acids. It was shown that about 50% of 90Sr is transferred by groundwater with colloidal particles of over 25 nm in size.  相似文献   

4.
In Russia, until recently, it was considered that groundwater was protected from surface radioactive contamination by soil and rocks in the zone aeration. Groundwater was not a subject of radiation control. The accident at the Chernobyl Nuclear Power Plant showed, however, that groundwater is vulnerable to radioactive contamination. In this connection, the vulnerability of groundwater to and the problems of protecting groundwater from radioactive contamination became urgent. The assessment of natural protection of groundwater from radioactive contamination is now considered a top priority. The zone of aeration is generally considered to be the zone separating groundwater from surface contamination. In respect to radioactive contamination, soils that may fix a large quantity of radionuclides serve as a protection zone of a higher order. The mapping of protectibility was done for each radionuclide taking into consideration the specific structure of the flow medium and migration properties of a radionuclide.90Sr and137Cs have different mechanisms of transport; convective transport is characteristic of the former and diffusive transfer of the latter. This is conditioned by different physico-chemical properties of the radionuclides and principally by their sorption capacities. The coefficient of distribution of90Sr is in many times less than the coefficient of distribution of137Cs. The environmental protection problem in regions with nuclear power plants and in areas subjected to radioactive contamination may be solved using a monitoring, system including interrelated systems of observation and prediction of the lithosphere and the hydrosphere. The problem of mathematical modeling of migration processes is related to the complexities of modeling the processes of flow, mass transfer, and the accompanying physicochemical processes in zones of full and partial saturation, as well as difficulties in mathematical calculations.  相似文献   

5.
A model of precipitation of radiocolloid particles on enclosing rocks at colloid-facilitated transport of radionuclides by groundwater is considered. The model proposed is based on probabilistic analysis of deposition of heterogeneous colloidal particles on fixed sites of groundwater filtration channels, which are formed by connected systems of pore_ and fracture voids in enclosing rocks. The model takes into account heterogeneity of the system of colloidal particles and competition of different particles for the same potential deposition sites. Theoretical analysis is based on the solution of the system of Kolmogorov-Feller equations. The limit values of the obtained solutions correspond to the equilibrium distribution of radiocolloid particles of different sizes between the groundwater and the enclosing rocks. In the case of a homogeneous system of particles, the obtained distribution is reduced to the Langmuir isotherm.  相似文献   

6.
Iron and Mn oxides and associated radionuclides in soils and sediments from the radioactive waste burial grounds at Oak Ridge National Laboratory have been selectively extracted using wet chemical techniques. Product-moment-correlation analyses have demonstrated that 60Co and various actinides, principally 244Cm, 241Am and 238Pu are dominantly associated with Mn oxides. Correlation coefficients between these radionuclides and Fe oxides and organic C are generally very low. The important role of Mn oxides in radionuclide adsorption is attributed to their unique surface and colloidal properties. The data illustrate the importance of the Mn oxide component of soils and sediments in controlling transition metal and actinide solubility.These results suggest two major implications for the disposal of radioactive waste. First, in order to minimize future 60Co and actinide mobilization from disposal sites, a chemical environment in which Mn oxides are least soluble should be maintained. Second, the liberal use of Mn oxides in waste management operations might improve long-term retention of these radionuclides. Deep-sea Mn modules, which may in the future be mined for their trace metal contents, could serve as a ready supply of Mn oxide for waste disposal applications.  相似文献   

7.
Compacted bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste. An erosion of bentonite particles caused by a groundwater flow at the interface of a compacted bentonite and a fractured granite was studied experimentally under various geochemical conditions. The experimental results showed that bentonite particles could be eroded from a compacted bentonite buffer by a flowing groundwater depending upon the contact time, the flow rate of the groundwater, and the geochemical parameters of the groundwater such as the pH and ionic strength.

A gel formation of the bentonite was observed to be a dominant process in the erosion of bentonite particles although an intrusion of bentonite into a rock fracture also contributed to the erosion. The concentration of the eroded bentonite particles eroded by a flowing groundwater was increased with an increasing flow rate of the groundwater. It was observed from the experiments that the erosion of the bentonite particles was considerably affected by the ionic strength of a groundwater although the effect of the pH was not great within the studied pH range from 7 to 10. An erosion of the bentonite particles in a natural groundwater was also observed to be considerable and the eroded bentonite particles are expected to be stable at the given groundwater condition.

The erosion of the bentonite particles by a flowing groundwater did not significantly reduce the physical stability and thus the performance of a compacted bentonite buffer. However, it is expected that an erosion of the bentonite particles due to a groundwater flow will generate bentonite particles in a given groundwater condition, which can serve as a source of the colloids facilitating radionuclide migration through rock fractures.  相似文献   


8.
The paper presents ultrafiltration and microscopic study of colloidal matter from radioactive waste disposal site at the Siberian Chemical Plant. It is established that most part of actinides (55–90%) are mainly bonded to colloidal particles, whereas only 20% natural uranium are bonded to >5–µm particles at the background site. In general, the retention of transuranium elements (TUE) from contaminated waters by membranes with pore size from 200 to 5 nm increases with increase of anthropogenic uranium content in water  相似文献   

9.
《Applied Geochemistry》1993,8(5):419-436
The Chernobyl nuclear accident took place on 1986-04-26, and resulted in radionuclide pollution of vast regions of Byelorussia. This has raised several geochemical problems: (1) investigation of the distribution and behaviour of radionuclides in the natural and technogenic landscapes (which were examined as a result of a 5-a study); (2) modes of occurence of radioactive elements in the environment; and (3) preliminary estimation of radionuclide migration in the future. As background information, geochemical studies carried out within Byelorussia, as well as landscape investigations in the period 1953–1987 made under the guidance of K.I. Lukashev were very important for solving the above questions. According to the results of these investigations, the lithogeochemical and hydrogeochemical zoning of Byelorussia is understood and the radioactive background of the republic was studied in the 1960s, as well as the distribution and peculiarities of clay minerals, carbonates, FeMn oxides, organic matter, pH-Eh, and the contents of many elements in the surficial deposits of Byelorussia. All these factors are of great importance for understanding the behaviour of radionuclides.Radionuclide fallout on Byelorussia in the first days after the accident was mainly dependent on the mass movement of air and rain. In cities, fallout was confined to regions with intensive industrial dust emissions, as well as to river valleys, where degassing of deep-seated zones through faults occurred side by side with evaporation. Radionuclide washout from upland territories can be related to secondary processes.After 5 a, the radioactive emission near the surface of the Earth decreased due to the decay of short-lived isotopes and penetration of radionuclides deeper into the soil, although the major part still occurs at a depth of 1–5 cm. Bogs, peat-bog soils, aquifers with fluctuating groundwater levels, variable pH-Eh conditions and a igh biological activity are all factors contributing to radionuclide migration in the Byelorussian landscape. A part of the radionuclides is gradually removed from eluvial landscape and accumulated in subareal landscape (e.g. lakes, oxbow-lakes, water-storage basins).The Chernobyl debris are represented by the following substances: “hot” particles, pseudocolloids, aerosols and gaseous compounds. Study of the modes of occurrence of radionuclides by different methods (e.g. extracts, sorbents) made it possible to estimate the migration capacity of some radionuclides (Cs, Sr, Ce, Ru), and to distinguish two zones around the reactor—the nearest and remote ones—differing in the ratio of “hot” particles and condensate fallout, which causes a different migration capcity of radionuclides.A very important part is assigned to biological processes and organic matter, which cause the destruction of “hot” paricles, the formation of organomethallic complexes, and water migration of nuclides.In the future (within 300 and more years), the redistribution of radionuclides in the landscape involves processes of weathering, erosion and sedimentation which will strongly depend on climatic conditions, Side by side with a gradual decay of Cs and Sr, an appreciable accumulation of241Am, which is very mobile in landscape, should be expected due to decaying241Pu.A considerable development of scientific and applied exploration should also be expected in the future and this will help in solving problems of radioactive pollution of landscapes.  相似文献   

10.
放射性废物处置研究进展   总被引:1,自引:0,他引:1  
放射性废物的处置是制约核能可持续发展的关键因素,目前已成为国际社会关注的热点问题之一.针对处置场地核素运移污染的风险问题,对放射性废物的处置及其选址、核素运移试验和核素运移模型进行了回顾和论述.指出采用多重屏障系统进行放射性废物的处置,其安全性是可以得到保障的;处置场的选址应遵循就近原则,并应从环境水文地质的角度来构建...  相似文献   

11.
在高放废物处置库选址中,场地水文地质条件的认识极为重要,因为任何从处置库释放出来的放射性物质都将通过地下水搬运向人类生存环境或生物圈迁移.甘肃北山地区是我国高放废物处置库的重要预选区之一,位于我国西北甘肃省西北部.为了认识预选区的水文地质条件,从水文地质角度评价其作为高放废物处置库场地的适宜性,在过去的10 a,在该区开展了同位素水文地质调查工作.野外调查和氢、氧稳定同位素分析结果表明,研究区地下水主要源自大气降水补给.浅部地下水主要由现代区内降水补给形成,而深部地下水则可能由地质历史时期降水补给形成;浅部地下水系统具有相对开放性特征,水循环交替能力较强,而深部地下水系统具有相对封闭性特征,水循环交替能力较弱.  相似文献   

12.
The candidate repository for high-level nuclear waste in the Gorleben salt dome, Germany, is expected to host 8,550 tonnes of uranium in burnt fuel. It has been proposed that 5,440 waste containers be deposited at a depth of about 800?m. There is 260?C280?m of siliciclastic cover sediments above the proposed repository. The potential groundwater contamination in the siliciclastic aquifer is simulated with the TOUGHREACT and TOUGH2-MP codes for a three-dimensional model with 290,435 elements. Two deterministic cases are simulated. The single-phase case considers the transport of radionuclides in the liquid phase only. The two-phase case accounts for hydrogen gas generated by the corrosion of waste containers and release of gaseous C-14. The gas release via a backfilled shaft is assumed to be steady (non-explosive). The simulation period is 2,000,000 years for the single-phase case and 7,000 years for the two-phase case. Only the radioactive dose in the two-phase case is higher than the regulatory limit (0.1?mSv/a).  相似文献   

13.
The risk of groundwater contamination following the infiltration of waste surface water, is of great interest, particularly in areas experiencing water shortage. In this study, the distribution characteristics of contaminants along the Cihe River, in the piedimont plain of the Taihang Mountains, China, was investigated by measuring the soil and water samples. The main organic contaminants detected in different media include hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and pesticides. The main contaminants found in different media are mostly derived from the river water, which can be seen from the results of waste water from the river and groundwater, from the soil samples from different depth and distance of the profiles along the river. The distribution characteristics showed that there has been a natural attenuation of the contaminants from the river during their transportation through the soils and groundwater. The sorption of organic compounds to soil organic matter is thought to be a main mechanism of natural attenuation.  相似文献   

14.
按地下实验室或处置库的不同主岩,简述了以花岗岩,岩盐,粘土岩和凝灰岩等作处置库主岩的核素迁移示踪试验的研究现状,重点介绍了以花岗岩作高效废物处置库主岩的示踪试验方法和进展。  相似文献   

15.
The present-day landscape in Central Germany, in particular the region of Leipzig, Halle and Bitterfeld, is characterized by the scars of former industrial activities. Vast districts have been devastated by lignite strip mining. Industrial and domestic waste, residues from ore smelting, and highly toxic waste products from petrochemical plants and pesticide production were deposited in abandoned pits near population centers. The chief effects of waste on the environment are the contamination of groundwater by dissolved pollutants, the acidification of soil and water by the oxidation of pyrite-containing mining waste, and the salinization of shallow aquifers by rising brines from adjacent confined groundwater affected by mining. The consequences for the region are serious: mining lakes used for recreational purposes are contaminated by leachates from adjacent waste dumps. Pyrite-containing refuse from lignite mining under oxidation gives rise to the acidification of surface and groundwater, a basic condition for pollutant mobilization. In former metal mining districts, metalliferous and radioactive residues from smelting jeopardize public health. These effects are described in detail using three case studies. Received: 30 July 1996 · Accepted: 24 February 1997  相似文献   

16.
为了定量计算陵区近海核电站排水管线泄漏情景下核素通过地下水途径向海洋环境的释放通量,以某近海核电站为例进行研究。首先,应用GOCAD软件建立三维地形地质模型,刻画地层的分布、剥蚀以及倾向等特点;然后,运用地下水数值模拟软件FEFLOW精细刻画丘陵区地下水系统的补给、径流和排泄特征;最后,以不被吸附滞留的核素3H和被吸附滞留的核素90Sr、137Cs为对象,通过实验测定了90Sr、137Cs在不同岩土介质中的分配系数,模拟计算了排水管线连续渗漏60 a后3H、90Sr、137Cs在地下水中的放射性分布及释放。结果表明:3H迁移速度基本与地下水流速一致,地下水中的最大放射性浓度为0.285 0 Bq/L,第20 000天时向收纳水域的释放通量达到最大值,约526 Bq/d;90Sr吸附性能相对较弱,最大迁移距离约80 m,地下水中的最大放射性浓度为0.032 1 Bq/L;137Cs吸附能力较强,相当长的时间内被滞留在管线附近,地下水中最大放射性浓度分别为6.840×10-3 Bq/L,释放通量为0 Bq/d。由弥散度的不确定分析可知,弥散度越大,地下水中3H的最大放射性浓度越小,向海洋环境的释放通量越多。  相似文献   

17.
As per the regulatory requirements controlling the disposal of radioactive waste, the performance of waste disposal facilities needs to be assessed quantitatively using predictive models. This estimates the potential impact of disposal on the environment and public health. Near Surface Disposal Facilities (NSDFs), constructed to contain the low level radioactive waste are considered to model the radionuclide migration from the system to the geo-sphere. The radiation dose experienced by an individual through drinking water pathway is the endpoint of assessment of the model. A three dimensional groundwater contaminant transport model with a decaying source is modelled numerically to determine the radiation dose for short-lived and long-lived radionuclides. The consideration of uncertainties constitutes an intrinsic part of modelling. The uncertain input parameters include porosity, longitudinal dispersivity, transverse dispersivity, diffusion coefficient and distribution coefficient. The uncertainty propagation and quantification is carried out using collocation based stochastic response surface method (CSRSM). To run the simulations for the huge set of input, a code is developed using built-in python interface in the numerical model. The results are processed further to obtain the sensitive parameters affecting the output concentrations. Further, the probability of radiation dose exceeding permissible value is estimated by subset simulation.  相似文献   

18.
Natural colloids have a potential role in facilitating the transport of radionuclides in groundwater. To assess the role of mobile colloidal phases in radionuclide transport, characterization of colloids for size, size distribution, zeta potential, surface charge and elemental composition is required. Groundwater samples were collected from 12 borewells in the study area and were characterized with respect to physicochemical parameters. Water quality parameters such as pH, temperature, specific conductance, TDS and dissolved O2 were measured in situ. Based on salinity, two groundwater types were identified in the study area: (1) freshwater type and (2) brackish type. Laboratory and field-scale turbidity measurements in addition to quantitative analysis of major ions were carried out. It was observed that the colloid concentrations are reduced at higher salinity. Zetasizer, particle size analyzer, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction techniques were used to characterize the colloidal particles in groundwater. Colloids were present in all the groundwater samples, the concentration varying between 0.05 and 6 mg/L. Colloid concentration was greater in wells with low ionic strength and the number of colloidal particles varied between 3 × 109 and 4 × 1011 particles/L. The average colloid size varied between 200 and 350 nm for various samples. The zeta potential of the colloidal particles varied between −25.5 and –34.0 mV. SEM analysis of colloidal particles revealed the presence of clays particularly kaolinite and that the mineral composition of colloids reflects the mineralogy of the aquifer. For proper risk assessment and remediation studies, the role of colloids in radionuclide transport assumes greater importance. This study highlights the need for, and relevance of, detailed colloid characterization to assess its role in the migration of radionuclides from near surface disposal facilities.  相似文献   

19.
20.
岩溶地下水污染风险评价对岩溶地下水的保护、管理和合理利用具有重要意义。文章总结了近年来国内外地下水污染风险评价方面的研究进展,针对目前评价体系存在的不足,构建了适合岩溶区地下水污染风险评价体系。该方法基于欧洲模式,实现地下水防污性能评价;污染负荷评价则考虑污染物在覆盖层中的衰减过程,利用折减系数实现污染负荷量化;最后,基于GIS空间叠加分析耦合防污性能与污染负荷评价,实现区域地下水污染风险评价。文章以地苏地下河系流域为例,开展岩溶区域地下水污染风险评价,结果表明:区域整体地下水污染风险偏低,地下水中等及以上污染风险区域面积424.41 km2,占研究区总面积的39.03%,主要分布在研究区中东部地苏乡、东庙乡、六也乡局部等人类活动频繁与地苏地下河干流中下游段。地下水污染风险空间分布特征不仅显示了岩性、坡度、岩溶网络发育等自然条件对评价结果的影响,同时也反映了人类活动的影响。地势平缓,岩溶发育程度强烈,加之人类活动频繁是导致区域地下水污染风险较高的原因所在。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号