首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Lower Cretaceous successions that crop out in the eastern part of the Getic Carbonate Platform (Southern Carpathians, Romania) preserve records of the Valanginian events in different settings of the platform. The integrated sedimentological, biostratigraphical, geochemical and mineralogical analysis of the upper Berriasian–Valanginian successions reveal successive stages in the evolution of the carbonate platform: (a) pre-drowning stage of the shallow-shelf and slope settings of the platform; (b) subaerial exposure and karstification; and (c) incipient flooding and drowning of the carbonate platform. Following the subaerial exposure, starting in the middle early Valanginian, the eastern part of the Getic Carbonate Platform experienced a drowning phase documented by iron oxyhydroxides, phosphate and glaucony mineralized discontinuity surface and glaucony-rich sediments disposed on the discontinuity surface. Recognition of the diachronous intra-Valanginian discontinuity surface within the studied successions is based on clear evidences (facies contrast, depositional and diagenetic features, biostratigraphic and taphonomic data, and geometrical relations). The negative–positive carbon isotope excursion is correlated with the global perturbations of the carbon cycle related to the Valanginian “Weissert” episode, and it is documented for the first time in the shallowest parts of the Getic Carbonate Platform. Tectonic activity and eustatic sea-level fluctuations were most probably the main factors that led to fault-block tilting, local emersion and subsequent drowning of the eastern part of the Getic Carbonate Platform during the Early Cretaceous. We infer that the eastern part of the Getic Carbonate Platform was affected by late Berriasian–early Hauterivian extensional tectonics that could be related to the Neo-Cimmerian movements with effects generally recognized in the northern peri-Tethyan areas.  相似文献   

2.
The new data obtained on conodonts from the Lower Ordovician of the Kidryasovo, Akbulaksai, and Kuagach formations (the central part of the Sakmara Zone of the Southern Urals) allow to evaluate the biogeography of conodonts of this region. The comparison of conodont assemblages of the Southern Urals with well-studied conodont assemblages of the Baltoscandian Basin situated in the northwestern part of the East European Platform show that these assemblages were biogeographically isolated. This shows that basins of the central and eastern parts of the East European Platform were separated by land in the Early Ordovician.  相似文献   

3.
Miocene carbonate platforms cover a large part of the Central Vietnamese South China Sea margin. Early carbonate deposition took place on two regional platforms separated by a narrow depression developed along the trace of the East Vietnam Boundary Fault Zone. West of the East Vietnam Boundary Fault Zone, the Tuy Hoa Carbonate Platform fringes the continental margin between Da Nang and Nha Trang. Here, platform growth initiated during the Early Miocene and continued until Middle Miocene time when regional uplift led to subaerial exposure, termination of platform growth and karstification. East of the fault zone, the Triton Carbonate Platform was also initiated during the Early Miocene. Carbonate growth thrived during Early and part of Middle Miocene time and a thick, clean Lower and Middle Miocene carbonate succession cover the Triton Horst and the Qui Nhon Ridge. During the Middle Miocene, partial drowning resulted in the split-up of the Triton Carbonate Platform. Repeated partial drowning events throughout the Middle and Late Miocene resulted in westwards retreat of platform growth and eventual platform drowning and termination of carbonate deposition. Modern carbonate growth continues on isolated platforms hosting the Paracel Islands farther seawards. The onset of widespread carbonate deposition largely reflects the Early Miocene transgression of the area linked with early post-rift subsidence and the opening of the South China Sea. The mid-Neogene shift in carbonate deposition is interpreted as a consequence of regional uplift and denudation of central and south Indochina starting during Middle Miocene time when the Tuy Hoa Carbonate Platform became subaerially exposed. Stressed carbonate growth conditions on the Triton Carbonate Platform probably resulted from increased inorganic nutrient input derived from the uplifted mainland, possibly enhanced by deteriorated climatic conditions and rapid sea-level fluctuations promoting platform drowning.  相似文献   

4.
The generalized eustatic and tectonoeustatic models developed by the author are tested on Lower Cretaceous deposits of the eastern part of the Russian Plate. The models are applicable to facies analysis of sections of epicontinental basins with mainly slope sedimentation. They demonstrate possible variations in section lithology depending on the rate of eustatic changes and the intensity and direction of epeirogenic movements. It has been revealed that the Lower Cretaceous sections in the east of the Russian Platform formed as a result of the synchronous global eustasy and regional epeirogeny. Superposition of the global eustatic curve onto the Lower Cretaceous chronostratigraphic chart of the eastern part of the platform showed that global eustasy, periodically concealed by regional epeirogeny, played a crucial role in the Early Cretaceous history of the study area. Regional epeirogenic and eustatic curves were constructed. The epeirogenic curve demonstrates the contribution of vertical tectonic movements to the overall eustatic-epeirogenic result recorded on a regional eustatic curve. The latter was constructed from the analysis of the spatial and temporal changes in the stratigraphic position of formations and strata and transgressive surfaces ranking. Eustatic cycles of different ranks, from elementary (systems tracts) to regional scale, have been recognized. In the rank of largest lithostratigraphic units, three sequences are revealed: Valanginian (RP-1K), Upper Hauterivian–Upper Aptian (RP-2K), and Albian (RP-3K), which reflect the crucial stages of the Early Cretaceous evolution of the eastern Russian Plate. The eustatic-epeirogenic processes during accumulation of formations and strata from Early Berriasian to Late Albian (145.5–99.6 Ma) are considered. It is shown that the division of the studied composite section into sequences permits precise prediction of diverse solid minerals.  相似文献   

5.
华北陆台晚古生代岩相古地理   总被引:1,自引:0,他引:1  
唐开疆 《沉积学报》1989,7(4):97-104
位于天山-阴山、昆仑山-秦岭两大纬向构造带之间的华北陆台。在稳定地壳基底上逐渐发展形成晚古生代多旋回克拉通大型含煤盆地。加里东运动使陆台缺失O3-C1沉积,晚石炭世至晚二叠世陆台为海陆交互相滨海、湖泊、三角洲沉积,随着古地理环境演变,陆台各沉积古地理环境在时、表现为由老至新、自北向南迁移。  相似文献   

6.
Foraminifers from Middle-Upper Jurassic and Upper Cretaceous sediments of the Kaliningrad basin located in the southwestern part of the East European platform are studied. During the greater part of the Late Mesozoic, the study region represented a northern margin of a spacious epicontinental sea in the Boreal zoogeographic realm. The analyzed composition and quantitative distribution of foraminifers, ratio between planktonic and benthic species, ornamentation degree of tests, and their preservation are used to reconstruct paleogeography and history of eustatic sea-level changes. The upper Callovian through Upper Jurassic zonation based on distribution of Epistomina species is proposed. Defined foraminiferal assemblages are correlated with coeval assemblages from the East to West European platforms and North Atlantic  相似文献   

7.
华南上扬子区中部中—上寒武统白云岩大量发育,形成于特殊的古气候、古海洋环境,但其沉积环境和成因上存在争论。基于细致的野外和室内沉积学研究,湖北兴山古洞口剖面中—上寒武统覃家庙群、三游洞群划分出8个岩相类型和3种沉积旋回类型,主要沉积于浅海碳酸盐岩台地潮下带和页岩盆地环境。采用沉积旋回叠置方式和Fischer图解方法,分析了上扬子区中—晚寒武世可容纳空间的变化历史,识别出18个四级旋回和7个三级旋回,并初步建立了高频海平面变化曲线。中—晚寒武世沉积相的时空间展布规律表明,扬子台地相对海平面逐渐降低,经历了从页岩盆地(或深潮下带)到浅潮下带环境的演变,沉积类型从较深水的陆源碎屑与碳酸盐的混合沉积变化为较浅水碳酸盐沉积。中、晚寒武世扬子台地碳酸盐岩沉积与全球性沉积特征表现一致,反映了该时期独特的全球“超暖期”气候和台地内部较高盐度的古海洋条件。  相似文献   

8.
塔里木地区奥陶纪岩相古地理   总被引:11,自引:5,他引:6  
本文是《塔里木地区寒武纪岩相古地理》一文的延续。塔里木地区是以当今的塔里木盆地为主体并包括其周边山地的广大地区,北至中天山,南至西昆仑山,西至我国国界,东至阿尔金山,面积逾100万km2 。在98个露头剖面和钻井剖面的各种单因素定量及定性资料的基础上,采用单因素分析多因素综合作图法,编制出了塔里木地区奥陶系下奥陶统两河口阶和红花园阶、中奥陶统大湾阶和牯牛潭阶、上奥陶统庙坡阶、上奥陶统宝塔阶、上奥陶统临湘阶和五峰阶5个作图单位的各种单因素图,并在此基础上编制出了相应的5个地质时期的岩相古地理图。这些岩相古地理图的最主要特征是定量,即每个古地理单元的划分和确定都有确切的定量资料及定量单因素图为依据。这种定量的岩相古地理图在塔里木地区还是首次出现。在早奥陶世两河口期和红花园期,塔里木地区主要是碳酸盐台地,其中散布着各种滩。其北部为南天山盆地,东部为塔东盆地,南部为西昆仑台地,其东侧为东昆仑台地和柴达木台地。无陆地和云坪,盆地面积相当大。这与该地区寒武纪的岩相古地理格局大不相同。这表明早奥陶世的海进比寒武纪的更甚了。中奥陶世大湾期和牯牛潭期的岩相古地理面貌与两河口期和红花园期的相似,但南天山盆地西部扩大了,从而形成了柯坪盆地。这是一个重要变化。庙坡期的古地理面貌与大湾期和牯牛潭期的相似,但滩少了,这标志着海进又发展了且可能到达了盛期。至宝塔期,在塔里木台地的东南部,碎屑岩发育,这是塔里木碳酸盐台地向碎屑岩台地变化的预兆,是海退的标志。到晚奥陶世的临湘期和五峰期,塔里木台地基本上变成了1个碎屑岩台地。这是一个重大变化。这标志着塔里木地区寒武纪和奥陶纪海进海退旋回的终结。  相似文献   

9.
东海陆架盆地第三纪海平面变化   总被引:5,自引:0,他引:5       下载免费PDF全文
武法东  李培廉 《地质科学》1998,33(2):214-221
东海陆架盆地是建立西太平洋新生代海平面变化的关键地区。本文以层序地层和沉积体系分析为基础,利用微体古生物带化石资料,建立了东海陆架盆地第三系相对精度较高的年代地层格架。通过古生态分析、成因相及特征沉积构造分析和反射地震剖面的海岸上超分析,辅以地球化学参数变化研究,首次编制了东海陆架盆地第三纪海平面变化曲线。自第三纪以来,能识别的长周期二级旋回海平面变化4次,短周期三级旋回变化26次,相对海平面变化幅度在0-150m.分析发现海平面变化具有不对称性,即海侵作用速度大于海退作用速度。与Haq曲线对比也有较大的差异。  相似文献   

10.
Riphean stromatolitic formations flank the East European epi-Karelian platform only in the east and northeast. They are traceable as long (over 3600 km) relatively narrow belt consisting of two rectilinear segments, one running along the Urals western flank from southern extremity of the Bashkirian meganticlinorium to the Polyudov Ridge and the other one extending from the southern and central Timan to the Kil’din Island and northern Norway. Within the belt there are known stromatolitic formations of all Riphean erathems: the Lower and Middle Riphean stromatolitic buildups are confined to the eastern segment of its southern part only, while the Upper Riphean occur everywhere. Their distribution conformable to large structural elements of the plaform margin being replaced by carbonate-terrigenous rocks almost lacking stromatolites westward and southwestward in the Kama-Belaya aulacogen system and by substantially siliciclastic succession eastward and northeastward. The distribution area of Upper Riphean stromatolitic formations includes the Karatavian stratotype region, where 12 stromatolite beds ranging in age from ≥900 to 620 Ma are established. Many of the beds are traceable along the strike far beyond the stratotype region. Representing relatively small reference units, the beds facilitate reconstruction of distribution dynamics of the Upper Riphean stromatolites. Distribution area of the latter was always parallel to marginal structures of the platform, though being of changeable size, particularly of length. Originated in the stratotype region eastern part, stromatolites first advanced into northeastern areas never crossing boundaries of the Upper Riphean distribution area during the Early Karatavian. In the initial Late Karatavian, they occupied a longest distribution area that was sharply reduced at the end of that period. According to distribution peculiarities in space and with time, the Upper Riphean stromatolitic formations accumulated likely in peripheral areas of an open sea or oceanic basin adjacent to the East European platform, rather than in closed epiplatform basins.  相似文献   

11.
The carbonate platform of the Upper Permian Wegener Halvø Formation in the Karstryggen area of central East Greenland is an example of a carbonate system with low production rates (2–3 cm kyr–1) and differs from most other carbonate platforms by the lack of well-developed highstand progradation. The platform consists of three depositional sequences that formed in response to Kazanian sea-level cycles. Pinning point curves for the subaerial exposure surfaces separating the depositional sequences quantify the amplitude of the relative sea-level fluctuations in the range of 70–140 m. The platform developed on the karstified surface of an older Permian carbonate platform with a topographic relief locally exceeding 70 m. The predepositional relief influenced deposition in all three sequences. Transgressive systems tracts are thin and commonly dominated by condensed siliciclastic deposits in off-platform areas and palaeo-lows. Over palaeotopographic highs they consist of aggrading cementstones. Highstand deposits are limited to palaeotopographic elevated areas and consist of cementstone build-ups along the basin margin, and shallow subtidal to intertidal carbonates and evaporites in the platform area. Elsewhere, carbonate deposition took place during falling sea-level, and thin laterally extensive units of shallow-marine grainstones rest directly on top of deeper marine shales in the two first sequences, whereas thick prograding units of oolitic grainstones form the forced regressive systems tract of the uppermost sequence.  相似文献   

12.
The noble metal (PGE and Au) geochemical specialization of igneous rocks of the Bashkir meganticlinorium and adjacent areas of the East European Platform is characterized for the first time. The identical plots of normalized PGE and Au concentrations of igneous rocks in these regions indicate similar conditions and mechanisms of the formation of the noble metal geochemical specialization during the emplacement of magmatic bodies. It is established that a specific feature of noble metal geochemical specialization (the “rhodium anomaly”) in magmatic complexes of the Bashkir meganticlinorium and eastern areas of the East European Platform is determined by the concentrations of noble metals in sulfide minerals (pentlandite); i.e., it is “primary” in origin.  相似文献   

13.
四川盆地早三叠世飞仙关早期的环境基本上继承了晚二叠世长兴末期的格局。在川东北地区演化为碳酸盐蒸发台地。蒸发台地飞仙关组为一套含硫酸盐的富白云岩的蒸发潮坪沉积层系。下部为薄层的含石膏、硬石膏晶体、团块及肠状石膏层的泥晶灰岩、微晶白云岩组成的小潮差蒸发潮坪层序。中部为层状鲕粒白云岩、鲕粒灰岩的潮下鲕粒滩相与萨布哈环境的富层状膏岩的膏坪相、含石膏岩的膏云坪相组成的大潮差蒸发潮坪层序。上部为中薄层状富泥的含石膏质夹层的泥质泥晶灰岩、微晶白云岩组成的旋回性清楚的似蒸发潮坪层序。这三种层序的纵向组合在蒸发台地相区可以很好对比,尽管各层序厚度有明显变化。强烈白云石化的鲕粒白云岩是四川盆地飞仙关组大中型气藏的主要储层,依据鲕粒岩的相序特征可将其分为有障壁性质的台缘鲕粒坝和台内鲕粒滩两类。蒸发台地西缘的台缘鲕粒坝在飞仙关期基本稳定。东缘的台缘鲕粒坝在飞仙关中后期大幅度向盆地方向迁移。  相似文献   

14.
This work discusses the complex characteristic of the Upper Cretaceous (Turonian-Lower Maastrichtian) section recovered by two boreholes in the southern part of the Volgograd region (right side of the Volga River) in the Gremyach??e potash deposit. Lithological and paleontological data (benthic foraminifers, radiolarians, and dinocysts) suggest several lithological-facies and biotic reorganizations. The analysis of the distribution of these microfossils through the section allowed the ages of the Zakharovo Group, Mozhzhevelovyi Ovrag, Mezino-Lapshinovka, Pudovkino, Zarya, Nalitovo, and Bereslavka Formations to be specified. Benthic foraminifers characterize zones of the Upper Cretaceous high-resolution scale available for the East European Platform and local (facies) units, while radiolarians and dinocysts reveal stratigraphic units in a bed rank. Using complex paleontological characteristics (benthic foraminifers, radiolarians, dinocysts), the defined biostratigraphic units are correlated between each other and with their counterparts in neighboring and remote regions of different paleobiogeographic regions and provinces. The Upper Cretaceous biostratigraphic scale is supplemented by the first defined dinocyst and radiolarian biostratigraphic units of the East European Platform. The new data provides evidence in favor of a three-substage division of the Campanian Stage instead the two-substage system presently accepted in Russia. It is shown that the traditional position of the lower boundary of the Maastrichtian Stage in the East European Platform is close to that of this boundary in the Standard Stratigraphic Scale. Some aspects of environmental and biotic evolution in the Volgograd region through the Late Cretaceous Epoch are considered.  相似文献   

15.
This paper presents characteristics of the structural regions surrounding the Siberian Platform and discusses the Vendian-present time evolution of the Siberian Paleocontinent with the Siberian Craton making up its nucleus. It shows that the paleocontinent underwent significant intraplate compressional deformations with vertical movements and formation of inversion structural features within broad areas. Such epochs of deformation took place at the Riphean-Vendian time boundary, during the Late Paleozoic, Late Triassic, Early Cretaceous, and during the Late Cenozoic. The principal rifting events took place during the Middle-Late Devonian. The paper presents paleotectonic reconstructions of East Siberia at several key time intervals.  相似文献   

16.
17.
A Barremian to Albian succession on Mount Kanala, part of a Tethyan isolated carbonate platform, was investigated for its δ13C variations. The limestone sequence is composed of a series of peritidal shallowing-upward cycles with clear petrographic evidence for strong early diagenetic overprinting related to repeated subaerial exposure. Despite significant impact of diagenesis, the observed changes in δ13C can be very well correlated with deep-water sections from different ocean basins and shallow water carbonate platforms in the Middle East. This lends further support to the applicability of δ13C variations for stratigraphic purposes in shallow-water limestones. Using the δ13C signal, time resolution in Lower Cretaceous platform carbonates can be significantly increased, independent of bio-zonations often hampered by ecological variability.
Cyclostratigraphic analysis of the Aptian part of the section shows that strong positive excursions of the cumulative departure from mean cycle thickness of the peritidal shallowing-upward cycles coincide with global positive δ13C excursions. This, and the fact that positive shifts in the δ13C record are preserved within shallow water limestones, provide evidence that black-shale accumulation in the ocean basins occurred during sea-level rise and flooding of platform tops. Integration of carbon-isotope-, cyclo- and sequence-stratigraphic results from different carbonate platforms indicate that strong positive global δ13C shifts and concurrent organic-carbon burial during black-shale deposition are ultimately caused by rapid rises of eustatic sea level. Hence, the rate of change of eustatic sea level is considered to play a crucial role in black-shale accumulation in the global ocean basins during the Cretaceous.  相似文献   

18.
针对中- 晚三叠世扬子台地的淹没事件,分析了黔西南贞丰挽澜中- 上三叠统竹杆坡组的微相,并讨论了其沉积环境 演变。采用Flügel 标准微相的判别方法共识别出九种微相,包括:纹层状粘结灰岩、微晶藻球粒灰岩、泥晶灰岩、含生物 碎屑泥晶灰岩、棘皮泥晶灰岩、亮晶砂屑鲕粒生物碎屑灰岩、藻团块生物碎屑泥晶灰岩、含生物碎屑泥晶灰岩-P 和泥晶灰 岩-P。九种微相的有序组合和分布位置显示它们形成于快速的潮坪-台地边缘转变过程和漫长的深水陆棚及盆地环境。海 平面变化分析显示,黔西南中- 晚三叠世竹杆坡组沉积期的海平面变化不同于扬子台地主体,无论是二级旋回还是三级旋 回都响应于全球海平面变化。  相似文献   

19.
晚侏罗世东亚多向汇聚构造体系的形成与变形特征   总被引:47,自引:2,他引:47  
板块构造研究成果与同位素精确定年数据的积累,使我们对发生在中国东部的晚侏罗世-早白垩世东亚多向汇聚作用有了深刻的认识.全球三大洋在晚侏罗世(165±5)Ma近乎同时的开启,以及东亚周边占太平洋、新特提斯洋和蒙古-鄂霍茨克洋的俯冲消亡,在中国中东部和东亚地区形成了多向挤压汇聚的燕山期构造体系,即东业多向汇聚构造体系(简称东亚汇聚).东亚汇聚启动了经典的燕山运动,发育了独特的构造变形特征.东亚汇聚构造体系具有两个近乎稳定的刚性陆核,即鄂尔多斯地块和四川(盆地)地块,在它们的周缘形成了晚侏罗世-早白垩世陆内多向挤压变形和似前陆盆地,如大巴山晚侏罗世前陆.此外,东亚多向汇聚构造体系影响了东亚和中亚大部分地区的板内变形作用,在中国大陆及其周边形成了反映南北向挤压的蒙古弧共轭走滑断裂系统、燕山-阴山陆内造山带、大别山-大巴山侏罗纪陆内造山带等典型的燕山期构造带.东亚汇聚具有深刻的全球构造背景与动力来源,是重要的科学研究问题.  相似文献   

20.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号