首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
We consider the formation of the Dal’nii (Dal’nyaya) eluvial gold placer (Bol’shoi Anyui ore–placer district, western Chukchi Peninsula), related to the Dal’nii (Dal’nee) gold-bearing porphyry Mo–Cu occurrence. The Dal’nii placer is located within the transition between the Kur’ya Ridge and Anyui basin, which has been relatively stable at the recent (Pliocene–Quaternary) tectonic stage. Minor recent uplift has determined the slight denudation of interfluves, the leading role of eluvial processes in the formation of a loose cover on them, and the preservation of the relict matter of pre-Pliocene chemical-weathering crusts (including the oxidized zones of orebodies) in present-day eluvium. The Dal’nii placer consists of relict weathering-crust placers altered by recent eluvial processes in different degrees. Therefore, it is relatively rich in metal, whereas the primary lode contains mainly fine-sized gold, which is almost not released from ore under periglacial lithogenesis in present-day interfluves. We suggest calling this genetic type of placers “residual-eluvial.” The primary lodes being highly eroded (during the formation of residual concentrations, which serve as an intermediate reservoir for these placers), residual-eluvial placers or their parts might not be directly related to specific orebodies at the present-day level of erosional truncation.  相似文献   

2.
The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu–Mo, Pb–Zn–Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo–U, Pb–Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn–W–Li–Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt–trachydacite series and rhyolite of the Turga Series, which fill the Strel’tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.  相似文献   

3.
Native Au on the northern flank of the Tyrnyauz ore cluster is related to the pyroxene–garnet association of skarns and is represented by separate idiomorphic ingrowths in rock-forming minerals of skarns and relatively isometric xenomorphic grains in the interstices. Gold mineralization can be attributed to the Au-skarn geological–industrial type with ores of a low-sulfide formation and Au–Bi–Te geochemical specialization.  相似文献   

4.
The Monakoff iron oxide–Cu–Au (IOCG) deposit, located to the north east of Cloncurry within the Eastern Succession of the Mount Isa Inlier, Queensland, Australia, is characterised by high concentrations of F and Ba, with a host of other enriched elements including Co, Ag, Mn, REE, U, Pb, Zn and Sr. This gives the deposit a characteristic gangue assemblage dominated by fluorite, barite and calcite. The nearby E1 deposit, located 25 km to the NNE of Monakoff, and the large Ernest Henry deposit, 3 km to the west of E1, also contain abundant fluorite, barite and calcite in late stage assemblages. The three deposits, therefore, constitute a distinct group of IOCG deposits within the district, based on their F-rich geochemical and mineralogical affinities.The Monakoff ore zone is hosted in dilational openings along a shear zone developed within metasediments and metavolcanic rocks at the boundary between competent hangingwall rocks of the Toole Creek Volcanics and footwall rocks of the Mount Norna Quartzites. Four stages of alteration and mineralisation are recognised: Stage 1 garnet–biotite alteration; Stage 2 biotite–magnetite alteration; Stage 3 main F–Ba-ore mineralisation; and a Stage 4 pyrite–alloclasite Au–Co–As overprint. The E1 deposit has a more complex history, but Stage 5 has veins of fluorite–barite–carbonate that are comparable to Monakoff's main stage. The Stage 3 assemblage at Monakoff comprises a sheared groundmass of fluorite, barite, manganoan calcite, magnetite, chalcopyrite, pyrite, galena and sphalerite, with coarser grained pods of the same mineralogy interpreted to be dilational structures infilled during syn-ore deformation. Accessory minerals include U–Pb-oxides, REE–F-carbonates and Ag–Pb–Bi-sulfosalts, with no discrete Au minerals. The sulfosalts are interpreted to have formed from an immiscible Bi-melt within the mineralising fluid at temperatures higher than the melting point of Bi. The Stage 4 overprint at Monakoff contains pyrite and alloclasite. Laser ablation analyses of the sulphide minerals at Monakoff reveal that Stage 3 sulphides contain only trace amounts of Au (0.04 ppm in pyrite), although galena and chalcopyrite contain significant concentrations of Ag. Stage 4 pyrite and alloclasite, however, contain ~ 1 ppm Au in solid solution and mass balance calculations indicate the majority of bulk rock Au to be present in these minerals, although the majority of bulk Ag is present in Stage 3 sulphides. The Stage 5 veins at E1 have an identical gangue and accessory mineralogy to Stage 3 at Monakoff and differ in the sulphide mineralogy only in the lack of galena and sphalerite.Four fluid inclusion populations are identified within the fluorite at Monakoff: Group 1 is CO2 rich; Group 2 is complex solid–liquid–vapour inclusions, with two groups based on homogenisation temperature (> 450 °C and 300–375 °C). Laser ablation-ICP-MS analyses indicate that these inclusions contain Cu, Pb, Zn, Fe, Mn, Mg, Ag, REE, U and Ba, but significantly no S, Se or Au; Group 3 are solid–liquid–vapour inclusions with a Th of 200–275 °C, and contain Ba, Na, Mg, K and Br; and Group 4 are low salinity liquid–vapour inclusions. Group 1, 2 and 4 inclusions are also present in fluorite at E1. The REE geochemistry of fluorite from Monakoff and E1 is comparable and is characterised by a distinct positive Eu anomalies in all analyses, interpreted to indicate oxidising conditions at the time of high temperature ore deposition. The presence of abundant fluorite and barite is indicative of fluid mixing due to the insolubility of barite and fluorite and thus Ba and S, and Ca and F must have been introduced via different fluids. We propose that the oxidised fluid represented by the Group 2 inclusions and containing F, Ba, REE, U and base metals, mixed with a reduced, S-bearing fluid in a zone of dilation in the host shear zone that acted as a conduit for fluid flow during D3 deformation. The source of the metal and F-rich fluid is likely to be the nearby granitic intrusions of the Williams–Naraku batholith, probably the Malakoff granite. This granite is also likely to be the source of the CO2 represented by Group 1 fluid inclusions, and the REE, U, base metals and possibly Au, although the high Pb and Zn content of Monakoff and not E1 may suggest a local input of those elements at Monakoff. Stage 4 mineralisation overprints the F–Ba stage and is characterised by a Co–As–Au signature. At present it is unclear if this is a late stage, more reduced, evolution of the main ore fluid, or a separate mineralising event entirely.The presence of this F–Ba-metal-rich fluid has produced a distinctive style of IOCG mineralisation in the area to the north of Cloncurry. The probable link to the Malakoff granite implies that similar deposits may be present within several kilometres of the granite in suitable structural traps. Monakoff illustrates that although structurally controlled, the presence of Na–Ca alteration and ‘red rock’ K-alteration and brecciation are not key exploration criteria for these deposits. In addition, the presence of the overprinting As–Co–Au assemblage may indicate that this is a separate mineralising episode that may be present at other localities in the district. This study has also shown that fluorite can provide a powerful tool for determining ore forming conditions in F-rich IOCG systems.  相似文献   

5.
The Xiaoxinancha Au–Cu deposit is located at the eastern segment of the Tianshan–Xingmeng orogenic belt in northeast China. The deposit includes porphyry Au–Cu orebodies, veined Au–Cu orebodies and veined Mo mineralizations. All of them occur within the diorite intrusion. The Late Permian diorite, Late Triassic granodiorite, Early Cretaceous granite and granite porphyry are developed in the ore area. The studies on geological features show that the porphyry Au–Cu mineralization is related to the Late Permian diorite intrusion. New geochronologic data for the Xiaoxinancha porphyry Au–Cu deposit yield Permian crystallization zircon U–Pb age of 257 ± 3 Ma for the diorite that hosts the Au–Cu mineralization. Six molybdenite samples from quartz + molybdenite veins imposed on the porphyry Au–Cu orebodies yield an isochron age of 110.3 ± 1.5 Ma. The ages of the molybdenites coeval to zircon ages of the granite within the errors suggest that the Mo mineralization was genetically related to the Early Cretaceous granite intrusion. The formation of the diorite and the related Au–Cu mineralization were caused by the partial melting of the subduction slab during the Late Palaeozoic palaeo‐Asia Ocean tectonic stage. The Re contents and Re–Os isotopic data indicate that the crustal resource is dominated for the Mo mineralization during the Cretaceous extensional setting caused by the roll‐back of the palaeo‐Pacific plate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The evolution of the geological structure in the Southern Argun’ Region is studied in terms of changing geodynamic conditions of the Proterozoic, Caledonian, and Variscan Tectonomagmatic Cycles, which also under Mesozoic tectonomagmatic activation led to the formation of latite igneous rocks enriched in Au, Cu–Mo, Pb–Zn–Ag, volcanic and plutonic complexes of the caldera structures with Mo–U, Pb–Zn, and fluorite ores, and rare-metal granites with a Sn–W–Li–Ta spectrum.  相似文献   

7.
Analysis of modern paleontological, isotope-geochemical, and paleotectonic data on Vendian rocks in the Patom Basin (Siberia) is presented. The paper discusses depositional settings and features of the specifics of sedimentogenesis of the Barakun carbonate–terrigenous formation, which matches the lower strata of postglacial deposits of the Dal’nyaya Taiga Group. It is shown that formation of the transgressive Barakun Formation was governed by relatively deep-water (below the storm wave base) distal settings of a low-angle (about 1°) homoclinal ramp. Its formation was related to a more intense sagging of the northeastern part of the Ura Uplift. The formation of breccias and intrusions was fostered by high seismic activity of the paleobasin recorded in plastic deformations along with liquefaction and fluidization of sedimentary beds. The constant seismic destabilization of bottom beds provoked small but frequent landslides without the formation of turbidite flows. The continuous dislocation of sediments toward the depocenter actively governed specifics of the ramp architecture. The unusual behavior of sediments during their long-term thixotropic residence could be related to a high content of organic matter, processes of methanogenesis and, probably, dissemination of gas hydrate compounds.  相似文献   

8.
Rare strontium mineral tausonite and a peculiar Al- and F-rich titanite variety were found in the metamorphosed metalliferous sediments of the Triassic chert formation of the Sikhote Alin, which are distinguished by the abundance of native elements, intermetallic compounds, and metal solid solutions, as well as the presence of diverse Au, Ag, and PGE minerals. Tausonite was documented in the manganese (metamorphosed siliceous-rhodochrosite) rocks of the Ol’ga mining district and in the “brown cherts” (siliceous rocks with manganese garnet and spessartine) of the Dal’nerechensk district, Primorye. It forms rather numerous grains 2–10 μm across usually occurring as inclusions in quartz or rhodonite. According to the electron microprobe analysis, in addition to Sr, Ti, and O, the mineral contains only Fe3+ (up to 0.20 a.f.u.). Aluminum-fluorine titanite was found in the “brown cherts” of the Dal’nerechensk district of Primorye (upper reaches of the Gornaya River). Its crystals are up to 200 × 200 μm in size. The recalculation of the microprobe analyses to crystal chemical formulas indicated that up to half of the Ti sites in the structure of this mineral may be occupied by Al. The decrease of the total positive charge owing to the Al3+ substitution for tetravalent Ti4+ is compensated for by a decrease in the total negative charge owing to F? substitution for O2? via the scheme Al3+F? → Ti4+O2?. The occurrence of considerable amounts of F substituting for oxygen in the titanite structure and, as a consequence (owing to the crystal chemical features of the mineral), the high Al content were related to the reduced character of the metamorphism of the metalliferous deposits.  相似文献   

9.
Three groups of industrial uranium deposits that differ in the distribution of lanthanides in U oxides have been recognized. A dependence of the REE distribution type on the Yttrium content and Yttrium index YI = (La + Ce)/Y that controls the formation of REE phases capable of selective accumulation of lanthanides has been discovered. This indicates the important role of crystal–chemical fractionation in the distribution of lanthanides. Preferable accumulation of Sm–Gd by U oxides has been found to occur at relatively low contents of Y. In Proterozoic uranium deposits, the yttrium specialization of oxides predominates, while in most Phanerozoic deposits the lanthanum–cerium specialization is typical. These results extend the possibilities of using REEs in ores for purposes of study of the genesis of various uranium deposits.  相似文献   

10.
New data were obtained on δ13Сcarb and δ18O variations in the sequence of deposits of the Dal’nyaya Taiga series at the western and eastern flanks of the Ura anticline. The summary δ13С curve was plotted in view of the correlation of sequence–stratigraphic data of the basin analysis. A series of positive anomalies was found within the succession. Alternatives for global chemostratigraphic correlation of the Dal’nyaya Taiga series of the Ura uplift were considered.  相似文献   

11.
The formation environments of stratiform ore deposits in the Neoproterozoic Baikal–Patom region (BPR) have been considered. A model for the formation of the Sukhoi Log gold ore deposit in the Bodaibo zone has been put forward. The first stage is gold concentration by a chemolithotrophic bacterial community. Independently established facts suggest that bacterial communities may also have contributed to initial metal accumulation in the sediments of the Kholodnaya Pb–Zn deposit. The ore beds occur in the high-carbon sediments of the side and trough of a back-arc basin. Sedimentation (Dal’nyaya Taiga and Zhuya regional horizons) took place during the “back-arc basin–foreland basin” transition. This transition is characterized by increased sediment bioproductivity, which is clearly evidenced from the increased biophile-element content and taxonomic diversity of organic remains. Hundreds of microfossil sites in the Neoproterozoic BPR host littoral benthos (cyanobacteria and brown algae) and plankton (green algae). Most microfossils in the outer shelf, on the basin side, and in its trough belong to chemolithotrophic bacteria. These bacteria are assumed to have accumulated metals in the vent field of the back-arc basin. Studies showed the ability of microorganisms (bacteria, algae, fungi, etc.) to accumulate Fe, Mn, Au, Pb, Zn, and other metals. Bacterial communities are particularly important for metal accumulation in the vent fields of rift zones and areas of arc volcanism. All these conditions were observed in the Neoproterozoic BPR.  相似文献   

12.
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au (Sb) deposit and Au deposits at Zhaojialing, Wuxi, and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au (Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods (144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au (Cu) in the process. Integrated with the results of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.  相似文献   

13.
The noble metal (PGE and Au) geochemical specialization of igneous rocks of the Bashkir meganticlinorium and adjacent areas of the East European Platform is characterized for the first time. The identical plots of normalized PGE and Au concentrations of igneous rocks in these regions indicate similar conditions and mechanisms of the formation of the noble metal geochemical specialization during the emplacement of magmatic bodies. It is established that a specific feature of noble metal geochemical specialization (the “rhodium anomaly”) in magmatic complexes of the Bashkir meganticlinorium and eastern areas of the East European Platform is determined by the concentrations of noble metals in sulfide minerals (pentlandite); i.e., it is “primary” in origin.  相似文献   

14.
A cause-and-effect relation is established between historical metallogeny of gold and uranium and extraterrestrial factors (impact events, evolution of the distance between Earth and Moon, rotation geodynamics), which significantly affected the Early Precambrian tectonic evolution of our planet. It is shown by the example of the complex Witwatersrand deposit that the Precambrian polygenetic Au and U deposits of the quartz–pebble type were formed within a near-equatorial epi-Archean supercontinent and were related to extraterrestrial factors under a rotation regime of the plume vertical tectonics. The beginning of breakup of the epi-Archean supercontinent in the Paleo- and Mesoproterozoic (2.0 ± 0.3 Ga) was related to the abrupt decrease in the velocity of the Earth’s axial rotation followed by the dominant regime of subhorizontal plate tectonics and formation of rich U deposits of the nonconformity type (which are structurally related to the horizontal inertial detachments at the contacts of the consolidated crust) and Meso- and Neoproterozoic sedimentary complexes.  相似文献   

15.
The newly discovered Paodaoling porphyry Au deposit from the Guichi region, Lower Yangtze River Metallogenic Belt(LYRB), contains 35 tons of Au at an average grade of ~1.7 g/t. It is a porphyry ‘Au-only' deposit, as revealed by current exploration in the depths, mostly above-400 m, which is quite uncommon among coeval porphyry mineralization along the LYRB. Additionally, there are also Cu-Au bearing porphyries and barren alkaline granitoids in the Paodaoling district. Zircon LA-ICP-MS U-Pb dating of the Cu-Au-bearing porphyries yield an age of 141–140 Ma, falling within the main magmatic stage of the LYRB, whereas the barren granites give an age of 125–120 Ma, coeval with the regional Atype granites. The Cu-Au-bearing porphyries are LILE-, LREE-enriched and HFSE-depleted, typical of arc magmatic affinities. The barren granites are HFSE-enriched, with lower LREE/HREE ratios and pronounced negative Eu anomalies. The Cu-Au-bearing porphyries in the Paodaoling district have high oxygen fugacities and high water content. Pyrite sulfur isotopes of the Paodaoling gold deposit indicate a magmatic-sedimentary mixed source for the ore-forming fluids. Based on the alteration and poly-metal zonation of the deepest exploration drill hole from the Paodaoling Au deposit, we propose that Cu ore bodies could lie at depth beneath the current Au ore bodies. The magmatism and associated Cu-Au mineralization of the Paodaoling district are likely to have formed in a subduction setting, during slab rollback of the paleo-Pacific plate.  相似文献   

16.
This study provides geochemical, mineralogical, and isotope data for rocks and ores from Lower Proterozoic black shale formations of the Kodar–Udokan structural and formational zone, which host the Khadatkanda gold—uranium deposit. The results indicate that the uranium and gold mineralizations were formed at different times in relation to different geodynamic settings. The gold mineralization is associated with the inception of the Syulban fault and has a juvenile source. The later Th–U mineralization originated during tectonic rejuvenation of the Syulban fault zone, while the sources of radioactive elements were presumably the underlying sediments of the Kodar Group, which are widespread throughout the area of the Baikal mountain region (BMR). Based on the above results, the Au–U mineralization in the study area can be recognized as unconformity-type deposits, analogous to the well-known deposits of Australia and Canada. In this connection, the Baikal mountain region has a good potential for the discovery of Au—U deposits.  相似文献   

17.
The Mesozoic Yili Basin of NW China represents the largest known concentration of U deposits in China and contains five major deposits, namely (from west to east) the 512 (Kujie’ertai), 513, 511, 510 (Mengqiguer), and 509 deposits. Pre-mining resources within the explored sandstone-type uranium deposits in this area are reportedly as much as 20,000 t contained U. The mineralization is hosted by the Middle–Lower Jurassic Shuixigou Group, which (from base to top) is divided into the Badaowan, Sangonghe, and Xishanyao formations. The U-Pb isotopic analysis of ores from the Kujie’ertai and Mengqiguer deposits indicate that they contain high and variable amounts of initial (common) Pb, meaning that the only possible way to date these deposits is by using U-Pb isochrons. Two major stages of uranium mineralization have been identified by the U-Pb isotope dating of uranium ores in this region. The Kujie’ertai deposit apparently formed between 23.4 ± 3.3 and 20.18 ± 0.49 Ma, corresponding to a period of crustal thickening and uplift within the Tien Shan Orogen. This event (35–21 Ma) accommodated the majority of the strain generated by the northward collision of the Indian Plate with the Asian Plate. However, the dating of samples from the Mengqiguer deposit yielded much younger ages (between 0.61 ± 0.24 and 0.347 ± 0.0048 Ma). The western Tien Shan mountains expanded until the Pliocene as a result of the far-field influence of continuous penetration of the Indian Plate into the Asian Plate. This activated reverse faults and folds in the piedmont of the Tien Shan mountains and caused the continuous uplift of the southern flank of the Yili Basin. The uplift caused the erosion of anticline hinge zones, introducing significant amounts of oxidizing water into the Shuixigou Group, generating a second stage of uranium mineralization. Hydrological sampling also suggests that the Mengqiguer deposit continues to grow, indicating a possible third stage of uranium mineralization (∼0 Ma). This also indicates that the U within these deposits is derived not only from U-bearing sediments but from the Tien Shan mountains as a result of groundwater cycling. The evolution of the U contents of groundwater that was initially derived from cold springs that flow into the mineralized units indicates that these cold springs have an essential role in mobilizing U from the Tien Shan mountains, with rivers flowing through areas of outcropping mineralized units acting as a source of mineralizing fluids during the formation of the Mengqiguer deposit.  相似文献   

18.
The Tikhoe epithermal deposit is located in the Okhotsk–Chukotka volcanic belt (OChVB) 250 km northeast of Magadan. Like other deposits belonging to the Ivan’insky volcanic–plutonic depression (VTD), the Tikhoe deposit is characterized by high-grade Au–Ag ore with an average Au grade of 23.13 gpt Au and Au/Ag ratio varying from 1: 1 to 1: 10. The detailed explored Tikhoe-1 orebody is accompanied by a thick (20 m) aureole of argillic alteration. Pyrite is predominant among ore minerals; galena, arsenopyrite, sphalerite, Ag sulfosalts, fahlore, electrum, and küstelite are less abundant. The ore is characterized by abundant Sebearing minerals. Cu–As geochemical specialization is noted for silver minerals. Elevated Se and Fe molar fractions of the main ore minerals are caused by their formation in the near-surface argillic alteration zone. The veins and veinlets of the Tikhoe-1 ore zone formed stepwise at a temperature of 230 to 105°C from Nachloride solution enriched in Mg and Ca cations with increasing salinity. The parameters of the ore-forming fluid correspond to those of epithermal low-sulfidation deposits and assume the formation of high-grade ore under a screening unit of volcanic rocks. In general, the composition of the ore-forming fluid fits the mineralogy and geochemistry of ore at this deposit. The similarity of the ore composition and parameters of the ore-forming fluid between the Tikhoe and Julietta deposits is noteworthy. Meanwhile, differences are mainly related to the lower temperature and fluid salinity at the Julietta deposit with respect to the Tikhoe deposit. The fluid at the Julietta deposit is depleted in most components compared with that at the Tikhoe deposit except for Sb, Cd, and Ag. The results testify to a different erosion level at the deposits as derivatives of the same ore-forming system. The large scale of the latter allows us to predict the discovery of new high-grade objects, including hidden mineralization, which is not exposed at the ore field flanks and beyond them.  相似文献   

19.
Major porphyry Cu–Au and Cu–Mo deposits are distributed across almost 5000 km across central Eurasia, from the Urals Mountains in Russia in the west, to Inner Mongolia in north-eastern China. These deposits were formed during multiple magmatic episodes from the Ordovician to the Jurassic. They are associated with magmatic arcs within the extensive subduction–accretion complex of the Altaid and Transbaikal-Mongolian orogenic collages that developed from the late Neoproterozoic, through the Palaeozoic, to the Jurassic intracratonic extension. The arcs formed predominantly on the Palaeo-Tethys Ocean margin of the proto-Asian continent, but also within two back-arc basins. The development of the collages commenced when slivers of an older Proterozoic subduction complex were rifted from an existing cratonic mass and accreted to the Palaeo-Tethys Ocean margin of the combined Eastern Europe and Siberian cratons. Subduction of the Palaeo-Tethys Ocean beneath the Karakum and Altai-Tarim microcontinents and the associated back-arc basin produced the overlapping late Neoproterozoic to early Palaeozoic Tuva-Mongol and Kipchak magmatic arcs. Contemporaneous intra-oceanic subduction within the back-arc basin from the Late Ordovician produced the parallel Urals-Zharma magmatic arc, and separated the main Khanty-Mansi back-arc basin from the inboard Sakmara marginal sea. By the Late Devonian, the Tuva-Mongol and Kipchak arcs had amalgamated to form the Kazakh-Mongol arc. By the mid Palaeozoic, the two principal cratonic elements, the Siberian and Eastern European cratons, had begun to rotate relative to each other, “drawing-in” the two sets of parallel arcs to form the Kazakh Orocline between the two cratons. During the Late Devonian to Early Carboniferous, the Palaeo-Pacific Ocean began subducting below the Siberian craton to form the Sayan-Transbaikal arc, which expanded by the Permian to become the Selanga-Gobi-Khanka arc. By the Middle to Late Permian, as the Kazakh Orocline continued to develop, both the Sakmara and Khanty-Mansi back-arc basins were closed and the collage of cratons and arcs were sutured by accretionary complexes. During the Permian and Triassic, the North China craton approached and docked with the continent, closing the Mongol-Okhotsk Sea, an embayment on the Palaeo-Pacific margin, to form the Mongolian Orocline. Subduction and arc-building activity on the Palaeo-Pacific Ocean margin continued to the mid Mesozoic as the Indosinian and Yanshanian orogens.Significant porphyry Cu–Au/Mo and Au–Cu deposits were formed during the Ordovician in the Kipchak arc (e.g., Bozshakol Cu–Au in Kazakhstan and Taldy Bulak porphyry Cu–Au in Kyrgyzstan); Silurian to Devonian in the Kazakh-Mongol arc (e.g., Nurkazgan Cu–Au in Kazakhstan and Taldy Bulak-Levoberezhny Au in Kyrgyzstan); Devonian in the Urals-Zharma arc (e.g., Yubileinoe Au–Cu in Russia); Devonian in the Kazakh-Mongol arc (e.g., Oyu Tolgoi Cu–Au, and Tsagaan Suvarga Cu–Au, in Mongolia); Carboniferous in the Kazakh-Mongol arc (e.g., Kharmagtai Au–Cu in Mongolia, Tuwu-Yandong Cu–Au in Xinjiang, China, Koksai Cu–Au, Kounrad Cu–Au and the Aktogai Group of Cu–Au deposits, in Kazakhstan); Carboniferous in the Valerianov-Beltau-Kurama arc (e.g., Kal’makyr–Dalnee Cu–Au in Uzbekistan; Benqala Cu–Au in Kazakhstan); Late Carboniferous to Permian in the Selanga-Gobi-Khanka arc (e.g., Duobaoshan Cu–Au in Inner Mongolia, China); Triassic in the Selanga-Gobi-Khanka arc; and Jurassic in the Selanga-Gobi-Khanka arc (e.g., Wunugetushan Cu–Mo and Jiguanshan Mo in Inner Mongolia, China). In addition to the tectonic, geologic and metallogenic setting and distribution of porphyry Cu–Au/Mo mineralisation within central Eurasia, the setting, geology, alteration and mineralisation at each of the deposits listed above is described and summarised in Table 1.  相似文献   

20.
近年来,燕山地区原青白口系下马岭组的年代学研究取得了突破性进展(其年龄为1368±12 Ma,1370±11 Ma,1366±9 Ma);在研究区金州大和尚山侵入于“桥头组”辉绿岩也获得新元古代锆石U-Pb年龄(904±15 Ma~1125±38 Ma).这些年代数据使我们认为对于辽南地区前人所划“震旦系”地层的划分与对比应进行重新考虑.本文以岩石地层和旋回地层为实际材料,生物地层和事件地层以及年代地层为手段,从长岭子组能否作为标志层入手,对辽南地区中-新元古界进行了系统研究,否定了长岭子组在地层对比中的标志层意义,首次提出葛屯组才是金县地区与复县地区进行地层对比的标志,并将复县地区的五行山群置于金县群之上,从而将辽南地区“震旦系”由老到新重新厘定为中元古界旅大群、革镇堡群和金县群与新元古界永宁群、细河群和五行山群.以碎屑岩为主要特征的岩石组合与海底火山喷发事件,将辽东半岛南部旅大群与蓟县剖面长城系进行了对比;以碳酸盐岩为主要特征并含丰富的叠层石Paraconophyton-Conophyton-Baicalia-Chihsienia等组合的革镇堡群与蓟县剖面蓟县系对比;富含叠层石Linella-Gymnosolen-Katavia-Cuijiatunia-Xingmincunella组合的金县群可与下马岭组对比,从而将金县群首次置于中元古界上部.含宏观藻类化石Chuaria-Tawuia-Longfengshania组合和蠕形类化石Pararenicola-Paleolina组合的永宁群-细河群-五行山群与加拿大新元古界小达尔群-含铜白云岩对比,永宁群-五行山群的时代应为新元古代早期.据此,笔者全面调整了徐淮胶辽吉中-新元古界的地层划分与对比,为在我国建立中-新元古界系一级的地层单元打下良好的基础,具有重要的地层学和年代学意义.同时,由于对该区中-新元古界重新进行了划分与对比,确认了大连上升是中元古界与新元古界的分界面,并大体相当于北美格林威尔运动在华北地块上的响应,为探讨燕山地区与徐淮胶辽吉中-新元古代的沉积特征,海水进退归程,构造运动以及重建Rodinia超大陆提供了地层资料,具有重要的古地理学和古构造学理论意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号