首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The largest rift zone of Europe and Asia is located in the region of Lake Baikal. In 1968–1970 deep seismic measurements were carried out along a number of profiles with a total length of about 2000 km within the rift zone and in the adjacent parts of the Siberian platform and the region of the Baikal Mountains. These investigations were of a reconnaissance nature, and therefore the point sounding method was used.A low-velocity region for compressional waves (7.6–7.8 km/sec) has been found and could be traced over a large area in the upper parts of the mantle. The width of this anomalous zone is 200–400 km. The Baikal rift lies in its northwestern part. Within the studied part of the Siberian platform the thickness of the earth's crust is 37–39 km, while in the rift zone it is 36 km, and further to the southeast the crust-mantle boundary lies at a depth of 45–46 km. The Baikal rift proper is bounded in the northwest by a deep fracture zone and does not seem to be associated with any significant “root” or “antiroot” in the relief of the Mohorovi?i? discontinuity.The reduced compressional velocity in the upper parts of the mantle beneath the Baikal zone is considered to correspond to the same phenomena found under the mid-oceanic ridges and the extended rift system in the Basin and Range province of North America. The Baikal rift in the narrow sense of the word lies over the northwestern edge of the anomalous mantle region. This asymmetric position seems to be its main peculiarity.  相似文献   

2.
Abyssal variations beneath the Baikal rift zone are revealed in an irregular seismic stratification of the crust, the presence of an intracrust waveguide and by the vast (> 200,000 km2) underlying area of anomalously low velocity (Pn = 7.6−7.8 km/sec) uppermost mantle. In its abyssal structure the Baikal rift is heterogeneous along the strike, with sharp changes in crustal thickness (35–50 km).Comparison of first-arrival seismic-velocity curves and also the respective velocity columns reveals the essential similarity of upper-mantle seismic cross-sections for all continental rift zones. The anomalous upper layer of the mantle (ca. 7.7 km/sec) is relatively thin (15-13 km) and can be linked with the mantle waveguide only locally.  相似文献   

3.
We present model of the structure and development of the entire lithosphere beneath the western Eger Rift (ER). Its crustal architecture and paths of volcanic products are closely related to sutures/boundaries of uppermost mantle domains distinguished by different orientations of olivine fabric, derived from 3-D analysis of seismic anisotropy. Three different fabrics of the mantle lithosphere belong to the Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD) microplates assembled during the Variscan orogeny. Dipping fossil (pre-assembly) olivine orientations, consistent within each unit, do not support any voluminous mantle delamination. The variable rift structure and morphology depend on the character of the pre-rift suture between the northern ST unit and the TB/MD units in the southern rift flank. The proper rift with typical graben morphology has developed above the steep lithosphere-scale suture between the ST and TB units. This subduction-related boundary originated from the closure of the ST Ocean. Parts of the crust and mantle lithosphere were dragged there into asthenospheric depths and then rapidly uplifted. The suture is marked by abrupt change in the mantle fabric and sharp gradients in regional gravity field and in metamorphic grade. The secular TB-side-down normal movement is reflected in deep sedimentary basins, which developed since the Carboniferous to Cenozoic and in topography. The graben morphology of the ER terminates above the “triple junction” of the ST, TB and MD mantle lithospheres. The junction is characterized by offsets of surface boundaries of the tectonic units from their mantle counterparts indicating a detachment of the rigid upper crust from the mantle lithosphere. The southwest continuation of the rift features in Bavaria is expressed in occurrences of Cenozoic sediments and volcanics above an inclined broad transition zone between the ST and MD lithospheres. Schematic scenario of evolution of the region consists mainly of a subduction of the ST lithosphere to depths around 140 km, exhumation of HP-HT rocks and the post-tectonic granitoid plutonism.  相似文献   

4.
The Tyrrhenian rift zone has been the site of widespread magmatism since late Tortonian times. A pronounced asymmetrical distribution, reflecting the tectonic structure, characterizes Italian magmatism. Sodic basalts occur on the western Tyrrhenian flank and transitional-MORB basalts occur in the Tyrhenian Sea. The eastern flank, however, is characterized by K-alkaline and HK- to ultra-alkaline (e.g. carbonatites and melilitites) rocks. Major trace elements and isotopic compositions allow two major magmatic lineages to be identified: one relating to a non-radiogenic basaltic end-member and the other to a mantle end-member enriched in Ca, with high LILE/HFSE ratio and high Sr isotopic ratios. Their mantle sources are located within the lithosphere thermal boundary layer (TBL) and the metasomatized phlogopite-carbonate asthenosphere at the base of the TBL, respectively. The composition and spatial distribution of volcanism and relative mantle sources tend to map the geometry of the lithospheric mantle and to define a pronounced increase in depth from less than 60 km to about 100 km across the boundary between the thinned Tyrrhenian lithosphere and the Adriatic lithosphere. A mechanism of intra-continental passive rifting, which drives mantle upwelling, is sufficient to satisfy the petrological and geochemical constraints and the observed tectonic environment without requiring a subduction plane.  相似文献   

5.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

6.
Ramon Carbonell   《Tectonophysics》2004,388(1-4):103
A seismic survey with a receiver spacing of 50 m provided one of the most densely sampled wide-angle seismic reflection images of the lithosphere. This unique data set, recorded by an 18-km-long spread, reveals that at wide-angles the shallow subcrustal mantle features high amplitude reflectivity which contrasts with a lack of reflectivity at latter travel times. This change in the seismic signature is located at approximately 120–150 km depth, which correlates with the depth estimates of the lithosphere–asthenosphere boundary (LAB) of previous DSS studies. This seismic signature can be simulated by two-layer mantle model. Both layers with similar average velocities differ in their degree of heterogeneity. The shallow heterogeneous layer and the deeper and more homogeneous one correlate with the lithosphere and the asthenosphere, respectively. Studies involving surface outcrops of ultramafic massifs and mantle xenoliths infer that the upper mantle is a heterogeneous mixture of ultramafic rocks (lherzolites, harzburgites, pyroxenites, peridotites, dunites, and small amounts of eclogites). Laboratory measurements of physical properties of these mantle rocks indicate that compositional variations alone can account for the wide-angle reflectivity. A temperature increase would homogenize the mixture, decreasing the seismic reflection properties due to melting processes. It is proposed that this would take place below 120–150 km (1200 °C, the LAB).  相似文献   

7.
J. Makris 《Tectonophysics》1976,36(4):339-346
Combined gravity and seismic data from Greece and the adjacent areas have been used to explain the high seismicity and tectonic activity of this area. Computed 2-D gravity models revealed that below the Aegean region a large “plume” of hot upper-mantle material is rising, causing strong attenuation of the crust. The hot “plume” extends to the base of the lithosphere and has very probably been mobilized through compressional processes that forced the lithosphere to sink into the asthenosphere. The above model is supported by: high heat flow in the Aegean region; low velocity of the compressional waves of 7.7 km/sec for the upper mantle; lower density than normal extending to the base of the lithosphere; teleseismic P-wave travel-time residuals of the order of +2 sec for seismic events recorded at the Greek seismic stations; volcanics in the Aegean area with a chemical composition which can be explained by assuming an assimilation of oceanic crust by the upper mantle; deep seismicity (200 km) which has been interpreted by various authors as a Benioff zone.  相似文献   

8.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

9.
松辽盆地徐家围子地区深反射结构及其盆地动力学意义   总被引:6,自引:0,他引:6  
通过松辽盆地徐家围子地区深反射地震剖面与世界典型深反射剖面对比,以岩石圈流变学模型为基础,结合浅层钻探资料可以发现,松辽盆地与世界典型裂谷盆地有相似的深反射特征,即层状结构十分明显。岩石圈横向分段性是另一个显著特点,由中下地壳挤压"断裂带"和由热流底辟体组成的"岩浆底辟带"分开。下部块段控制上部层状构造体系的形成与演化过程。由此证明,裂谷演化过程中地幔上涌是主要动力。地壳"三明治结构"和热流底辟体的发育表明,盆地不仅有高热流的地质条件,而且深部存在无机物质"储库"与通道。  相似文献   

10.
Deep seismic investigation carried out in Russia in long-range profiles with peaceful nuclear explosions allowed clarifying in details the structure of the upper mantle and the transition zone down to the depth of 700 km within the huge territory of old and young platforms of Northern Eurasia. Variability of horizontal heterogeneity of the upper mantle depending on the depth serves to qualitative estimation of its rheological properties. The upper part of the mantle to the depth of 80–100 km is characterized by the block structure with significant velocity steps of seismic waves at the blocks often divided by deep faults. This is the most rigid part of lithosphere. Below 100 km horizontal heterogeneity is insignificant, i.e., at these depths the substance is more plastic and not capable to retain block structure. On the lithosphere bottom at the depth of 200–250 km plasticity increase is observed as well but the zone of the lower velocities that might have been bound with the area of partial melting (asthenosphere) has not been found. These three layers with different rheological properties are divided by seismic boundaries presented by thin layering zones with alternating higher and lower velocities. At the specified depths any phase boundaries have been distinguished. These thin layering zones are assumed to form due to higher concentration of deep fluids at some levels of depths where mechanical properties and permeability of substance change. Insignificant number of fluids may result in appearance of streaks with partial or film melting at relatively low temperature—to the rise of the weakened zones where subhorizontal shifts are possible. According to seismic data in many world regions seismic boundaries are also observed at the depth of about 100 and 200 km; they may be globally spread. There are signs that areas of xenoliths formation and earthquake concentration, i.e., zones of high deformations, are confined to these depths.  相似文献   

11.
The magnetotelluric (MT) profile traverses the southeastern edge of the Siberian craton and the adjacent Paleozoic Olkhon collision zone, both being within the influence area of the Baikal rifting. The processed MT data have been integrated with data on the crust structure and composition, as well as with magnetic, gravity, and seismic patterns. Large resistivity lows are interpreted with reference to new geothermal models of rifted crust in the Baikal region. The northwestern and southeastern flanks of the profile corresponding, respectively, to the craton and the collision zone differ markedly in the crust structure and composition and in the intensity of rifting-related processes, the difference showing up in the resistivity pattern. The high-grade metamorphic and granitic crust of the craton basement in the northwestern profile flank is highly resistive but it includes a conductor (less than 50 ohm · m) below 16–20 km and a nearly vertical conductive layer in the upper crust. The crust in the southeastern part, within the collision zone, is lithologically heterogeneous and heavily faulted. High resistivities are measured mainly in the upper crust composed of collisional plutonic and metamorphic complexes. Large and deep resistivity lows over the greatest part of the section are due to Cenozoic activity and rift-related transcrustal faults that vent mantle fluids constantly recharged from deeper mantle.  相似文献   

12.
Petit 《地学学报》1998,10(3):160-169
To better understand how active deformation localizes within a continental plate in response to extensional and transtensional tectonics, a combined analysis of high-quality gravity (Bouguer anomaly) and seismicity data is presented consisting of about 35000 earthquakes recorded in the Baikal Rift Zone. This approach allows imaging of deformation patterns from the surface down to the Moho. A comparison is made with heat flow variations in order to assess the importance of lithospheric rheology in the style of extensional deformation. Three different rift sectors can be identified. The southwestern rift sector is characterized by strong gravity and topography contrasts marked by two major crustal faults and diffuse seismicity. Heat flow shows locally elevated values, correlated with recent volcanism and negative seismic P-velocity anomalies. Based on earthquake fault plane solutions and on previous stress field inversions, it is proposed that strain decoupling may occur in this area in response to wrench-compressional stress regime imposed by the India–Asia collision. The central sector is characterized by two major seismic belts; the southernmost one corresponds to a single, steeply dipping fault accommodating oblique extension; in the centre of lake Baikal, a second seismic belt is associated with several dip-slip faults and subcrustal thinning at the rift axis in response to orthogonal extension. The northern rift sector is characterized by a wide, low Bouguer anomaly which corresponds to a broad, high topographic dome and seismic belts and swarms. This topography can be explained by lithospheric buoyancy forces possibly linked to anomalous upper mantle. At a more detailed scale, no clear correlation appears between the surficial fault pattern and the gravity signal. As in other continental rifts, it appears that the lithospheric rheology influences extensional basins morphology. However, in the Baikal rift, the inherited structural fabric combined with stress field variations results in oblique rifting tectonics which seem to control the geometry of southern and northeastern rift basins.  相似文献   

13.
Using inversion of SV receiver functions, defined for various directions at each of the three broad-band stations located in the Baikal rift zone, detailed S velocity models of the crust and upper mantle down to 260 km have been obtained. These models reflect peculiarities of the velocity structure beneath Baikal depressions and mountains.  相似文献   

14.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

15.
根据体波层析成像技术,利用大量走时数据,做出0°~180°E,30°S~90°S范围内0~2889km深的三维速度分布图像,得到欧亚地区局部区域岩石圈及地幔的高分辨率速度结构,并从地球动力学角度出发对这些成像结果做进一步解释。  相似文献   

16.
对于贝加尔湖-石卷地学断面(BAMSIP)的西段俄罗斯贝加尔湖-中国满洲里断面城内的地质构造背景、地震剖面波类型和基本特征等研究发现:(1)断面域中贝加尔裂谷带地震波速度结构存在异常地幔带;结晶地壳物质成分基性程度较高;基底顶面和Moho界面未观察到明显的镜象关系;(2)西伯利亚南部的复杂相故基底由古生代和前寒武纪岩层所组构;区域构造由古褶皱系、中生代沉积盆地、裂谷带构成。  相似文献   

17.
详细的深部结构信息是深入认识华北克拉通显生宙改造和破坏的重要依据。基于密集流动地震台阵和固定台网记录的远震P波和S波接收函数资料,获得了跨越华北克拉通东、中、西部的3条剖面的岩石圈和上地幔结构图像,揭示了克拉通不同区域深部结构特征的显著差异。与东部普遍减薄的岩石圈(60~100km)相比,中、西部表现出厚、薄岩石圈共存的强烈横向非均匀性,既在稳定的鄂尔多斯盆地之下保留着厚达200km的岩石圈,又在新生代银川—河套和陕西—山西裂陷区存在厚度<100km的薄岩石圈,差异最大的厚、薄岩石圈仅相距约200km。岩石圈厚度在东、中部边界附近的约100km横向范围内显示出20~40km的迅速增加。岩石圈厚度的快速变化与地表地形从东向西的突然改变以及南北重力梯度带的位置大致吻合,并对应于地壳结构、地幔转换带厚度和660km间断面结构的快速变化。这种从地表到上地幔底部深、浅结构的耦合变化特征表明,东西两侧区域在显生宙可能经历了不同的岩石圈构造演化和深部地幔动力学过程。克拉通东部薄的地壳、岩石圈和厚的地幔转换带以及复杂的660km间断面结构可能与中生代以来太平洋板块深俯冲及其相关过程对这一地区岩石圈的改造和破坏有关;而中、西部存在显著减薄的岩石圈这一观测结果,并结合岩石、地球化学资料表明,克拉通岩石圈改造和减薄不仅发生在东部,而且可能影响了包括中、西部在内的更广泛的区域。岩石圈薄于100km的中、西部裂陷区可能与先前存在于岩石圈中的局部构造薄弱带相联系。这些古老岩石圈薄弱带可能经历了后期构造事件的多次改造,并在新生代印度—欧亚陆陆碰撞过程中被进一步弱化、减薄,最终造成地表裂陷。另一方面,中、西部总体较厚的地壳、岩石圈以及正常偏薄的地幔转换带表明,同太平洋深俯冲对东部的作用相比,包括印度—欧亚大陆碰撞在内的多期热-构造事件对该地区的构造演化影响相对较弱,不足以大范围改造和破坏高强度的克拉通岩石圈地幔根,从而造成了该地区现今岩石圈结构的高度横向不均匀。  相似文献   

18.
Carlo Doglioni 《Tectonophysics》2009,463(1-4):208-213
The Schellart's [Schellart, W.P., 2007, The potential influence of subduction zone polarity on overriding plate deformation, trench migration and slab dip angle. Tectonophysics, 445, 363–372.] paper uses slab dip and upper plate extension for testing the westward drift. His analysis and discussion are misleading for the study of the net rotation of the lithosphere since the first 125 km of subduction zones are sensitive also to other parameters such upper plate thickness, geometry and obliquity of the subduction zone with respect to the convergence direction. The deeper (> 125 km) part cannot easily be compared as well because E- or NE-directed subduction zones have seismic gaps between 270–630 km. Moreover the velocity of subduction hinge cannot be precisely estimated and it does not equal to backarc spreading due to accretionary prism growth and asthenospheric intrusion at the subduction hinge. It is shown here that hinge migration in the upper plate or lower plate reference frames supports a general global polarization of the lithosphere in agreement with the westward drift of the lithosphere. The W-directed subduction zones appear controlled by the slab–mantle interaction with slab retreat imposed by the eastward mantle flow. The opposite E-NE-directed subduction zones seem rather mainly controlled by the convergence rate, plus density, thickness and viscosity of the upper and lower plates. Finally, the geological and geophysical asymmetries recorded along subduction and rift zones as a function of their polarity with respect to the tectonic mainstream are not questioned in the Schellart's paper, but they rather represent the basic evidence for the westward drift of the lithosphere.  相似文献   

19.
Based on multiyear measurements of present-day motions in the central area of the Baikal rift system, new data on the kinematics of horizontal motions, relative horizontal deformation rates, and rotation velocities in the area of junction of the South Baikal, North Baikal, and Barguzin rift basins have been obtained. This area is an intricate structure with two transfer zones: Ol’khon–Svyatoi Nos and Ust’-Barguzin.It is shown that crustal blocks are moving southeastward, normally to the structures of transfer zones and at an acute angle to the Baikal Rift strike, which corresponds to the right-lateral strike-slip extensional faulting along the major structure. The average horizontal velocities increase from 3.0 mm yr–1 in the northern South Baikal basin to 6.5 mm yr–1 in the Barguzin basin. The elongation axes prevailing in the study region are mainly of NW–SE direction. The areas of intense deformations are confined to structures with high seismic activity in the South Baikal and, partly, Barguzin basins. This confirms the existence of a present-day zone of the Earth’s crust destruction in the Baikal rift system, which is the most likely source of strong earthquakes in the future. Two zones with rotations in opposite directions are recognized in the rotation velocity field. Clockwise rotation is typical of structures of N–NE strike (Maloe More basin, southern North Baikal basin, Barguzin Ridge rise). Counterclockwise rotation is determined for NE-striking structures (northern South Baikal basin, southern Barguzin basin). In general, the obtained data show an intricate pattern of present-day horizontal dislocations and deformations in the area of junction of NE- and N–NE-striking rift structures. This suggests left- and right-lateral strike-slip faults, respectively, within them.  相似文献   

20.
The upper-mantle structure was studied from first-arrival data along the Meteorite profile, run using underground nuclear explosions. Unlike the layered, slightly inhomogeneous models in the previous works, emphasis was laid on lateral inhomogeneity at the minimum possible number of abrupt seismic boundaries. We used forward ray tracing of the traveltimes of refracted and overcritical reflected waves. The model obtained is characterized by considerable velocity variations, from 7.7 km/s in the Baikal Rift Zone to 8.0–8.45 km/s beneath the Tunguska syneclise. A layer of increased velocity (up to 8.5–8.6 km/s), 30–80 km thick, is distinguished at the base of seismic lithosphere. The depth of the layer top varies from 120 km in the northern Siberian craton to 210 km in its southeastern framing. It has been shown that, with crustal density anomalies excluded, the reduced gravity field is consistent with the upper-mantle velocity model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号