首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
滑坡-碎屑流是一种沿着斜坡表面作远程运动的岩石碎屑流动体。碎屑流体在远程运动过程中会出现粒径分选,并在堆积体中呈现出一定的层序特征。本文通过开展碎屑流滑槽试验,观测了碎屑流运动过程中的粒径分选过程,并重点研究了碎屑流堆积体的垂向和滑移方向层序,采用分层和分段筛分法,对不同粒径的颗粒含量进行了分析,揭示出碎屑流堆积体内部不仅在垂向上具有反粒序结构,还在滑移方向上具有双峰分布形态。这两种堆积特征在6.24茂县新磨村滑坡和8.28纳雍普洒村崩塌堆积体的块石分布规律中得到验证,它们是滑坡-碎屑流体运动过程中块石之间相互作用的宏观反映,是分析碎屑流远程运动机制的重要现场证据。通过室内滑槽试验和实例分析,得到以下结论:碎屑流运动过程中产生的弥散压力和振动筛分是导致碎屑流堆积体中形成垂向反粒序以及滑移方向双峰堆积形态的重要原因。其中振筛作用的动力来源为碎屑流滑移区的不规则起伏引起的碎屑体振荡,以及由粒径差异造成的动量不均衡碰撞。  相似文献   

2.
滑坡-碎屑流物理模型试验及运动机制探讨   总被引:3,自引:0,他引:3  
郝明辉  许强  杨磊  杨兴国  周家文 《岩土力学》2014,35(Z1):127-132
滑坡-碎屑流由于高速、远程的特点常常引发灾难性事故,其复杂的运动机制导致预测致灾范围非常困难。通过开展室内模型试验,研究了碎屑粒径、滑床糙率和挑坎对运动特性的影响。试验结果发现,滑坡碎屑运动距离受控于前端碎屑,且随着碎屑的粒径增大而增加,增加滑床糙率、挑坎均可使碎屑的运动距离减小。在前人研究成果的基础上结合碎屑材料的力学特性探讨了滑坡-碎屑流出现流态化的原因和高速远程机制,即高速运动中颗粒间的作用力远小于完整岩体,因此颗粒间的“黏聚力”不能维持滑坡体的整体性,同时致使滑坡体与滑床接触的过程中传递至滑坡体内部的摩阻力减少,从而导致碎屑滑坡的远程结果。  相似文献   

3.
《地学前缘》2016,(2):251-259
高速远程滑坡-碎屑流是大型危岩体失稳破坏的主要成灾模式之一,它具有启动速度快、运动距离远、覆盖范围广的特点,具有极强破坏性,预测分析大型危岩体的运动特征具有重要的研究意义。文中选取重庆武隆县羊角场镇大巷危岩为研究对象,通过调查危岩体所处的地质地貌条件和危岩体发育特征,分析总结其潜在失稳模式和失稳后运动过程,利用DAN3D动力分析软件,参考鸡尾山滑坡反演分析的流变模型和参数,对危岩失稳后形成滑坡-碎屑流的运动学特征进行预测分析。模拟结果表明:(1)大巷危岩失稳后运动过程可分为启动、偏转抛出、碰撞铲刮和远程堆积4个阶段,运动时间约为220s,形成滑坡-碎屑流的滑程为2 500m;(2)大巷危岩滑体方量530×104 m3,滑后堆积体方量790×104 m3,堆积体水平长约1 680m,平均厚度约为6m,铲刮最大厚度为8m,碎屑流运动过程中最大速度为60m/s;(3)碎屑流可穿过羊角场镇城区抵达乌江,说明羊角场镇城区在大巷危岩的危害范围内;(4)文中的模拟计算结果可为高速远程滑坡-碎屑流的危险性定量评价研究提供依据。  相似文献   

4.
汶川八级地震滑坡高速远程特征分析   总被引:21,自引:3,他引:18  
汶川地震触发的高速远程滑坡主要沿龙门山主中央断裂带汶川映秀安县高川北川县城平武南坝青川一线地震破裂带展布。由于获得了1.5g以上的抛掷加速度,具有明显的气垫效应,估计最大滑动速度一般大于70ms-1,滑动距离一般为滑体启动时长度的数倍甚至10多倍,堆积成坝形成多处堰塞湖,最大滑行距离达3.2km。本文重点解剖了位于地震破裂带南西段(初始震中)的汶川映秀牛圈沟滑坡碎屑流、位于地震破裂带中段的北川城西滑坡和位于地震破裂带北东段青川东河口滑坡碎屑流3个典型实例,认为具有如下特征:(1)岩性条件:母岩遭受长期构造动力作用,呈碎裂岩体,后期被强烈风化,岩体极为破碎;(2)抛掷效应:位于汶川地震主断裂带或附近,垂直加速度大于水平加速度,强地面运动持时长,岩体发生振胀和抛掷;(3)碰撞效应:上部滑坡体发生高位剪出和高位撞击,致使岩体碎屑化;(4)铲刮效应:撞击作用导致下部山体被铲刮,形成次级滑坡,为碎屑流体提供了足够展翼和抛洒物源体积;(5)气垫效应:碎屑化岩体快速抛掷导致下部沟谷空气迅速谷状圈闭和向下紊流,形成气垫效应,或者,在下部地形开阔地带压缩空气呈层流状态致使滑体凌空飞行。  相似文献   

5.
本文利用室内物理模型试验,模拟了特定条件下滑坡碎屑流的滑动和堆积过程。获取了滑坡碎屑流堆积物的位置分布,并对其规律进行了分析,且在此基础之上对滑坡碎屑流运动机制进行了简单的分析。结果表明:碎屑流颗粒在滑坡发生后的最终位置分布兼具随机性和规律性;关于坡面中轴对称分布的碎屑流颗粒在滑坡后依然对称分布;堆积体中沿滑坡方向连续分布的颗粒在滑坡结束后最终位置分布在一定程度上并不连续;颗粒滑后位置分布受其滑前在颗粒整体中所处的位置影响较大;在沿坡面下滑过程中,碎屑流颗粒堆积体会发生内部的整体滚动。研究结果为滑坡-碎屑流运动机制的理论研究和复原滑坡初始状态提供了可靠的数据参考。  相似文献   

6.
高位滑坡具有高隐蔽特性,失稳破坏后往往转化为流动性强大的碎屑流,成灾时间短暂且破坏性极强。由于碎屑流本质为碎裂岩体在重力作用下的高速远程运动,研究其堆积体的粒径分布情况用以分析灾害过程,对碎屑流危害预测具有重要意义。基于该认识,本文选用PCAS系统分析碎屑流堆积体影像数据,并基于此结果开展后续分析。本文以2017年贵州普洒村崩塌碎屑流为研究案例,步骤如下:首先,结合现场调查,拍摄无人机航拍图像;随后,统计灾害前后受灾房屋情况;最后,使用PCAS系统开展堆积体图像识别,并分析堆积体粒径分布情况以及分析粒径分布与房屋破坏之间的关系;研究可知:(1)PCAS系统识别堆积体颗粒效果好,精度高。(2)随着碎屑流的运移,堆积物小粒径占比增加。(3)大粒径出现了双峰分布,但总体上呈减少趋势。(4)在横向分布上,其一致性越来越优。(5)堆积体房屋具有"拦粗排细"的作用。综上可知,运用PCAS图像识别分析碎屑流粒径分布具有高效可靠的特点,能够在堆积体粒径识别领域发挥一定积极作用。  相似文献   

7.
重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟   总被引:5,自引:2,他引:3       下载免费PDF全文
1994年乌江重庆武隆段左侧岸坡鸡冠岭发生大型岩质崩滑,崩塌体碰撞解体后沿沟谷形成碎屑流,碎屑流体高速入江激起涌浪,最终形成堰塞湖,造成重大人员伤亡和经济损失。本文在滑坡现场工程地质调查的基础上,阐述了鸡冠岭崩滑-碎屑流的基本特征,对鸡冠岭崩滑-碎屑流运动过程中碰撞和铲刮等现象进行了分析,并基于DAN3D动力分析软件反演了鸡冠岭崩滑-碎屑流运动全过程,得到了崩滑-碎屑流速度分布规律和堆积体分布特征,模拟结果与滑坡的基本特征与堆积体分布特征基本吻合。鸡冠岭的研究成果较少,本文从数值模拟的角度剖析了鸡冠岭崩滑-碎屑流的动力特性,完善了鸡冠岭崩滑的研究。本文的研究结果为崩滑动力特性及滑坡涌浪效应研究提供了依据。  相似文献   

8.
我国西南岩溶山区位于上扬子地台,经过多期构造运动,形成了特有的强烈褶皱地貌形态,特大型滑坡灾害频发。通过资料收集、现场调查以及统计分析,讨论了岩溶山区典型滑坡后破坏的成灾模式和形成条件,并得出以下结论:(1)我国西南岩溶山区普遍呈现上陡下缓的地形地貌特征和上硬下软的地层结构特征,岩溶地貌和溶蚀岩体结构加剧了滑坡后破坏的成灾规模;(2)研究区的滑坡成灾模式主要分为岩质崩塌、高位远程滑坡-碎屑流和高位远程滑坡-泥石流三种类型;(3)岩质崩塌灾害类型剪出口高差通常小于50 m,等效摩擦系数通常大于0.6,堆积体破碎比在5~20之间;高位远程滑坡-碎屑流灾害类型剪出口高差通常在50~200 m之间,等效摩擦系数通常在0.33~0.60之间,堆积体破碎比在20~100 之间;高位远程滑坡-泥石流灾害类型剪出口高差通常大于200 m,等效摩擦系数通常小于0.33,堆积体破碎比区间大于100;(4)西南岩溶山区的“高位滑坡”剪出口高差通常大于50 m,具有高速远程运动特征,运动过程中具有冲击铲刮、破碎解体、气垫和流化四种动力学效应。滑坡后破坏成灾模式的提出,可以为滑坡运动动力学机理和成灾反演预测研究提供重要分析模型。  相似文献   

9.
东河口滑坡-碎屑流高速远程运移机制探讨   总被引:8,自引:0,他引:8  
摘 要 青川东河口滑坡-碎屑流是5.12汶川大地震触发的典型高速远程滑坡,滑坡自高程1300m处开始滑动,总滑程约2400m,致使780余人遇难。野外调研结果表明,该滑坡自启动到最终静止,分别经历了滑坡启动阶段、重力加速阶段、圈闭气垫效应飞行阶段、撞击折返阶段及长距离滑动堆积阶段五个重要动力过程,最终抵达下寺河左岸的红花地村并形成堰塞湖。文中通过对该高速远程滑坡-碎屑流的地质背景及形态特征进行剖析认为,东河口滑坡启动区的断层破碎带、局部凸起地形以及力学性质较差的千枚岩、板岩的存在,对该滑坡的启动均有着显著影响;滑坡体在运行一段距离后是否可以继续保持高速远程滑动,除了有利的地形外,滑体滑动路径上坡体堆积物的含水状态是促使该滑坡成为高速远程滑坡碎屑流的重要原因之一。  相似文献   

10.
论崩塌滑坡—碎屑流高速远程问题   总被引:3,自引:0,他引:3  
刘传正 《地质论评》2017,63(6):1563-1575
高速远程崩塌滑坡—碎屑流具有规模大、速度快、滑程远、多态化、常转向、冲程多、冲击性和摧毁性等特征。崩塌或滑坡高速远程实质上是其解体后的碎屑流运动形式。碎屑流高速远程与崩塌滑坡规模、物质成分结构、地形高差、沟道形态和引发因素及运动路经的环境等因素密切相关。崩塌滑坡变形破坏形式一般显示为蠕动—拉裂—剪断—滑移—冲出—解体—碎屑流化的过程。崩塌滑坡形成机理主要基于残余强度、蠕变作用和孔隙水压力等理论认识进行解释。碎屑流运动机理主要立足于势能动能转化传递、气体浮托和颗粒流运动理论予以解释。动势能转化、气体浮托作用和颗粒流运动三种解释是层次不同、相互补充的关系,不是彼此独立的。基于成年人在复杂地形下能够奔跑逃生,崩塌滑坡—碎屑流前锋的运动速度5m/s作为高速运动的下限值是比较合理的。崩塌滑坡—碎屑流区域的前后缘高差(H)与前后缘水平距离(L)的比值小于0.4或L/H值大于2.5可作为其远程运动的判据。崩塌滑坡—碎屑流成灾模式包括直接压覆、解体推挤、碰撞冲击、气浪吹袭、激流涌浪、堰塞湖淹没与滑坡坝溃决—洪水泥石流等多种形式。  相似文献   

11.
On 12 September AD 1717, a rock volume larger than 10 million m3 collapsed onto the Triolet Glacier, mobilized a mass composed of ice and sediment and travelled more than 7 km downvalley in the upper Ferret Valley, Mont Blanc Massif (Italy). This rock avalanche destroyed two small settlements, causing seven casualties and loss of livestock. No detailed maps were made at the time. Later investigators attributed accumulations of granitic boulders and irregular ridges on the upper valley floor to either glacial deposition, or the AD 1717 rock avalanche, or a complex mixture of glacial deposition, earlier rock avalanche and AD 1717 rock avalanche origin. In this study, we present cosmogenic 10Be exposure ages from nine boulders in the extensive chaotic boulder deposit with irregular ridges, two from Holocene glacier‐free areas, and one from a Little Ice Age moraine. Exposure ages between 330 ± 23 and 483 ± 123 a from eight of nine boulders from the chaotic deposit indicate that at least seven were deposited by the AD 1717 rock avalanche. The other three boulders yielded 10Be exposure ages of 10 900 ± 400, 9700 ± 400 and 244 ± 97 a, respectively. Our results are in good agreement with the existing chronology from dendrochronology and lichenometry, and radiocarbon analysis of wood samples, but not with older 14C ages from a peat bog in the upper part of the valley. Based on the new age control, the rock avalanche deposits cover the whole bottom of the upper Ferret valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches in the earthquake area and the other similar mountainous area in west China.  相似文献   

13.
甘肃武都古崩滑堆积体的沉积特征及其形成环境   总被引:6,自引:1,他引:5  
南凌  崔之久 《沉积学报》2001,19(3):351-356
在甘肃武都县城北第四纪地层剖面中,马兰黄土之下发育有一套以大量碎屑和部分粘土组成的混杂堆积体。其形成时的原始地貌已不复存在,成因也不明。本文在研究其沉积特征和周围地质、地貌环境的基础上,判定其属于崩滑堆积体,是基岩块体 (夹部分粘土 )高速崩塌滑动、碰撞分解堆积而成。堆积层具有上下不同的发生“层序”。作者将典型的崩滑堆积体的沉积“层序”划分为五层:A后期覆盖层或侵蚀面;B崩解-碰撞带层;C崩解-滑移带层;D滑移带层;E下伏地层。各发生层有不同的沉积特征,反映出高速运动块体经过内部碰撞分解后,上下层中存在动力过程和沉积过程的分异。作者研究了武都古崩滑体五个剖面中的粘土含量、粒径、砾石组构、沉积结构和构造的特点,并通过堆积物的沉积特征所反映的运动和动力学特性,结合周围地质、地貌环境,判定该混杂堆积体是在Q13 时期,武都城北部高耸的以变质石灰组成的基岩陡壁在暴雨的“触发”下,发生解体,形成固体碎屑流块体,由北向南高速运动堆积而成。后期由于粘土和水的加入,使崩滑体运动向泥石流体转化。  相似文献   

14.
高速远程冰-岩碎屑流研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
冰-岩碎屑流是高寒山区陡峭山体斜坡区冰崩、岩崩或滑坡解体后形成的冰屑、岩块和土颗粒混合体高速流动现象.由于裹挟了冰屑,冰-岩碎屑流具有超强的运动性,屡屡引发震惊世人的灾难性事件,是全球气候变暖大背景下地质灾害研究的热点与前沿问题.通过对近40余年来的研究进展进行梳理和评述,指出了冰-岩碎屑流的概念由来和主流定义方法,阐述了其成因机制的气候敏感性,结合典型实例论述了区域发育特征,重点分析了运动特征、减阻机理和冰屑影响机制.冰-岩碎屑流的超强运动性被认为与低摩擦冰减阻机理、摩擦热融减阻机理、侧限约束减阻机理密切相关.冰屑作为材料组分和融水来源,能够降低界面摩擦、改变冰-水-岩相互作用,进而形成复杂的热-水-力耦合作用.今后应加强研究冰-岩碎屑流事件的成因机制和时空分布规律、运动特性和冰屑影响机制、过程演化观测与预警评估技术,以期揭示冰-岩碎屑流运动机理,为冰-岩碎屑流及链生灾害的科学减灾提供有力支撑.   相似文献   

15.
金龙山金矿床矿源层特征   总被引:1,自引:0,他引:1  
金龙山金矿床产于秦岭元古宙-晚古生代海槽特殊有限洋盆之中,矿床赋存于上泥盆统南羊山组和下石炭统袁家沟组,该层位金丰度度,认为赋矿层位为矿源层。通过对矿源层沉积区域地质环境,地层岩石组合,岩相结合,沉积地球化学诸特征分析,以揭示矿源层是在动荡海盆环境下喷流沉积作用的结果,构造,火山热液活动是金矿源层形成根本原因  相似文献   

16.
The 1100-year-old Acheron rock avalanche deposit lies in an active tectonic setting in Canterbury, New Zealand, and has a volume of ten million cubic metres and a runout distance 3.5 km. The deposit comprises intensely fragmented greywacke rock, and the processes of intense rock fragmentation during runout are postulated to have generated an isotropic dispersive stress. Dynamic simulation shows that the runout can be explained as a flow of dry granular material with a normal coefficient of friction, if the presence of an isotropic dispersive stress within the moving rock debris throughout the runout is assumed. The dispersive stress distribution required to model the rock avalanche runout and match velocities calculated from run-up traces is closely similar to that used to simulate the runout of the much larger Falling Mountain rock avalanche in a similar lithologic and tectonic setting. Both events thus behaved in a fundamentally similar fashion.  相似文献   

17.
依据室内试验所得的石膏岩的基本力学性质随着大气中相对湿度变化的规律,并结合石膏矿采空区的破坏特征,将护顶层简化为铅直方向受均布荷载q作用的三铰拱分析模型,建立了相对湿度作用下的石膏矿采空区护顶层的尖点突变模型,研究了相对湿度作用下护顶层突发破坏的失稳机制。试验结果表明:石膏岩的力学性质在采空区中环境湿度的作用下,其强度和变形参数会大大降低。分析和工程计算结果表明:随着采空区中环境湿度的增加,支撑体系越不稳定,越容易跨越分叉集而发生突发失稳破坏;相空间的控制参数a随着采空区中环境湿度的增加,其代数值是逐渐增大的(绝对值减小,由负值向0变化),而控制参数b逐渐增大,系统突发失稳控制参数(a,b)的变化路径为向东北方向变化,该路径是系统较为容易发生突发失稳的路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号