首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray spectra of the sun have been obtained during solar flares. New emission lines are observed in the spectral range from 1.3 Å to 3 Å, and 8 Å–20 Å, the most intense of the new emission features being tentatively attributed to optical transitions in high stages of ionization of iron (Fexxv through Fexx). Studies of the variability of these lines during flares provide new information of the development of a hot plasma in the initial stages of the flare event.  相似文献   

2.
A list of emission lines in the spectra of solar flares between 6 Å and 25 Å has been compiled using data obtained with a KAP crystal spectrometer on the OSO-5 satellite. The emission lines have been classified according to their sensitivity to flare activity. This classification provides a method for discriminating between iron in high stages of ionization (Fe xx-Fe xxv) and lower stages (Fe xvii- Fe xix), the lines of which are both present in the same spectral region during flares. Identifications consistent with these classifications are proposed. Anomalous intensities in the spectra of Fe xvii and Fe xx are pointed out, and implications of the observations for models of the X-ray emitting regions are discussed.  相似文献   

3.
A rocket borne spectrometer was flown to measure absolute intensities of extreme ultraviolet spectral lines from the three ions O vi, Ne viii, and Mg x present in the Sun. From these measurements, intensity ratios of lines from O vi, ratios of lines from Ne viii, and ratios of lines from Mg x were formed. These experimental ratios were compared with ratios calculated by using specific theoretical values of the ionization equilibrium in which dielectronic recombination was included in the processes establishing ionization balance. The effects of the electron density and temperature gradient on the temperature distribution of the flux of the spectral lines in the solar atmosphere have been taken into account in the calculations of the ratios. The agreement between the experimental and calculated ratios is good for the ions Ne viii and Mg x and satisfactory for the ion O vi for which the calculated ratio is subject to large uncertainties. A reliable measurement of the electron temperature in the lower corona was obtained from the experimental ratios for Mg x. This experimental temperature is in good agreement with the emission temperature of the spectral lines of Mg x predicted from the theoretical values of the ionization equilibrium. The design and photometric calibration of a new rocket spectrometer developed to measure the intensity ratios over the broad spectral region 50 to 1250 Å are also described.  相似文献   

4.
Ionization equilibrium is a useful assumption which allows temperatures and other plasma properties to be deduced from spectral observations. Inherent to this assumption is the premise that the ion stage densities are determined solely by atomic processes which are local functions of the plasma temperature and electron density. However, if the time scale of plasma flow through a temperature gradient is less than the characteristic time scale for an important atomic process, deviations from the ionization stage densities expected for equilibrium will occur which could introduce serious errors into subsequent analyses. In the past few years, significant flow velocities in the upper solar atmosphere have been inferred from observations of emission lines originaing in the transition region (about 104–106 K) and corona. In this paper, three models of the solar atmosphere (quiet Sun, coronal hole, and a network model) are examined to determine if the emission expected from these model atmospheres could be produced from equilibrium ion populations when steady flows of several kilometers per second are assumed. If the flows are quasi-periodic instead of steady, spatial and temporal averaging inherent in the observations may allow for the construction of satisfactory models based on the assumption of ionization equilibrium. Representative emission lines are analysed for the following ions: C iii, iv, O iv, v, vi, Ne vii, viii, Mg ix, x, Si xii, and Fe ix–xiv. Two principle conclusions are drawn. First, only the iron ions are generally in equilibrium for steady flows of 20 km s–1. For carbon and oxygen, ionization equilibrium is not a valid assumption for steady flows as small as 1 km s–1. Second, the three models representing different solar conditions behave in a qualitatively similar manner, implying that these results are not particularly model dependent over the range of temperature gradients and electron densities thus far inferred for the Sun. In view of the flow velocities which have been reported for the Sun, our results strongly suggest caution in using the assumption of ionization equilibrium for interpreting spectral lines produced in the transition region.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be observed with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 Å have been resolved and identified, including several dielectronic recombination satellite lines to Si xiv and Si xiii lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.  相似文献   

6.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

7.
The 1.4–22.4 Å range of the soft X-ray spectrum includes a multitude of emission lines which are important for the diagnosis of plasmas in the 1.5–50 million degree temperature range. In particular, the hydrogen and helium-like ions of all abundant solar elements with Z > 7 have their primary transitions in this region and these are especially useful for solar flare and active region studies. The soft X-ray polychromator (XRP) is a high resolution experiment working in this spectral region. The XRP consists of two instruments with a common control, data handling and power system. The bent crystal spectrometer is designed for high time resolution studies in lines of Fe i-Fe xxvi and Ca xix. The flat crystal scanning spectrometer provides for 7 channel polychromatic mapping of flares and active regions in the resonance lines of O viii, Ne ix, Mg xi, Si xiii, S xv, Ca xix, and Fe xxv with 14 spatial resolution. In its spectral scanning mode it covers essentially the entire 1.4–22.5 Å region.This paper summarizes the scientific objectives of the XRP experiment and describes the characteristics and capabilities of the two instruments. Sufficient technical information for experiment feasibility studies is included and the resources and procedures planned for the use of the XRP within the context of the Solar Maximum Mission is briefly discussed.  相似文献   

8.
X-ray spectra of solar flares in the spectral range from 8.5 Å to 16 Å have been obtained from a Naval Research Laboratory crystal spectrometer flown on the sixth Orbiting Solar Observatory (OSO-6). A list of emission features is presented and tentative identifications of some of the features are suggested. The time-behavior of the emission lines during flares is discussed, and the possibility of determining electron densities in flare plasmas using density sensitive lines of highly ionized iron is considered. Approximate calculations are performed for a density sensitive line of Fexxii.  相似文献   

9.
Résumé De 1973 à 1979, on observe une diminution de l'intensité des raies d'émission et du continuum de HR Del au cours du temps.En 1978, on note la disparition des raies de haute excitation.La répartition énergétique spectrale dans le continu reste sensiblement la même dans l'intervalle 4000–5000 Å. Le fort excès ultraviolet trouvé de 3600 à 3250 Å est confirmé par les observations dans l'ultraviolet lointain effectuées à l'aide du satellite IUE.Nos observations montrent un important changement dans la structure des raies 4959 et 5007 Å de [Oiii] entre 1973 et 1976, les composantes polaires devenant plus faibles que les composantes équatoriales.
From 1973 to 1979, the intensity of emission lines and continuum of HR Del has steadily diminished.High excitation lines have disappeared in 1978.The spectral energy repartition in the continuum remains the same in the spectral range 4000–5000 Å. The strong ultraviolet excess found in the spectral range 3600–3250 Å is confirmed by IUE satellite observations in the ultraviolet.Our observations show an important change in the structure of the [Oiii] lines 4959 and 5007 Å between 1973 and 1976, the polar components becoming weaker than the equatorial ones.
  相似文献   

10.
Double pass photoelectric observations are presented of five Caii lines (H, K, 8498 Å, 8542 Å, and 8662 Å) in a number of solar plages of different degrees of activity, quiet regions, and a sunspot. The data are compared with previous work. All five lines show increasing emission together in plages and the least opaque of the infrared triplet lines appears to exhibit core emission prior to the more opaque members of the multiplet. The question of source function equality is considered and the differences and similarities among plage profiles and between plage and quiet profiles are shown qualitatively and quantitatively.Staff Member, Laboratory Astrophysics Division, National Bureau of Standards.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy. Inc., under contract with the National Science Foundation.  相似文献   

11.
R. Mewe 《Solar physics》1972,22(2):459-491
The fluxes of about 230 spectral lines in the range 1–60 Å from coronal ions of C, N, O, Ne, Na, Mg, Al, Si, S, Ar, K, Ca, Ti, Cr, Mn, Fe, and Ni are computed for a range of electron temperature from 105 to 109 K. The relative ion abundances are derived from Jordan's ionization equilibrium calculations. The continuum emission is derived from computations of Landini and Monsignori Fossi with a correction for the free-free emission.  相似文献   

12.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

13.
Spectroscopic diagnostics for the Nev and Mgv solar ions have been investigated. The theoretical forbidden line ratios from these ions are presented for estimating the Ne/Mg variation in different solar structures. Calculations for density and temperature line diagnostics of these ions are given for the several spectral line ratios and their applications are discussed with the help of available solar observations in space. Future observations from the CDS and the SUMER experiments aboard the SOHO satellite are also discussed.  相似文献   

14.
The rare-earth ions cerium ii, lanthanum ii, dysprosium ii, and additionally zirconium ii and iron ii, are seen as weak emission features in the wings of the solar Ca ii H and K lines. The strength of these emission lines increases on the disk toward the limb. We provide recent high-resolution observations at disk center and at the limb. The identity of the weak lines is re-worked. We point out the unique role of eclipse spectra in distinguishing between the photospheric and chromospheric origins of emission lines. It is then demonstrated from our full disk (Sun-as-a-Star) and center disk archives, 1974 – 2010, that no activity cycle related signal is evident (save for the H and K lines themselves).  相似文献   

15.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

16.
The emergent polarization structure within spectral lines from rapidly rotating stars of spectral type B5V has been computed for the Mgii 4481 Å doublet and H for several angles of inclination and for rotational speeds of 0.5 and 0.9 of the critical rotational speed. It is found in this study that the emergent polarization within the Mgii 4481 Å doublet is currently unobservable with modern polarimeters. However, the polarization within H should be observable.  相似文献   

17.
Wilhelm  K.  Lemaire  P.  Curdt  W.  Schühle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Huber  M. C. E.  Vial  J.-C.  Kühne  M.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M.  Feldman  U.  Hollandt  J.  Brekke  P. 《Solar physics》1997,170(1):75-104
SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.  相似文献   

18.
Measurements of the ionized Ca ii K line are one of the major resources for long-term studies of solar and stellar activity. They also play a critical role in many studies related to solar irradiance variability, particularly as a ground-based proxy to model the solar ultraviolet flux variation that may influence the Earth’s climate. Full disk images of the Sun in Ca ii K have been available from various observatories for more than 100 years and latter synoptic Sun-as-a-star observations in Ca ii K began in the early 1970s. One of these instruments, the Integrated Sunlight Spectrometer (ISS) has been in operation at Kitt Peak (Arizona) since late 2006. The ISS takes daily observations of solar spectra in nine spectra bands, including the Ca ii K and H lines. We describe recent improvements in data reduction of Ca ii K observations, and present time variations of nine parameters derived from the profile of this spectral line.  相似文献   

19.
MARTIN  RENATO  MACCARI  LISA  NOCI  GIANCARLO 《Solar physics》1997,172(1-2):215-223
We investigate the expected emission from coronal transients in the following spectral lines observable with the Ultraviolet Coronagraph Spectrometer (UVCS) on board SOHO: Hi L 1216 Å, Ovi 1032–1037 Å, Nv 1239–1243 Å, Mgx 610–625 Å, Sixii 499–521 Å, and Fexii 1242 Å. We calculate line intensities and profiles for typical CME conditions, and we analyse their relation with the properties of the perturbed coronal region. We find that significant changes in UV line intensities are produced during a coronal transient. An overall decrease of the Hi L intensity is found, which is mainly due to the Doppler dimming produced by the increase in plasma outflow velocity. The emission from heavy ions is instead mainly affected by variations in plasma density and temperature. We expect to compare these results with the future UVCS observations of coronal transients.  相似文献   

20.
Results are given of the detailed analysis of fourteen Fe xxv-xxiii lines ( = 1.850–1.870 Å) in the spectra of a solar flare on 16 Nov. 1970. The spectra were obtained with a resolution of about 4 × 10–4 Å, which revealed lines not previously observed and allowed the measurement of line profiles. The measured values of the wavelengths and emission fluxes are presented and compared with theoretical calculations. The analysis of the contour of the Fe xxv line ( = 1.850 Å) leads to the conclusion that there is unidirectional macroscopic gas motion in the flare region with the velocity (projection on the line of sight) ± 90 km s–1.Measurements of the 8.42 Å Mg xii and 9.16 Å Mg xi lines in the absence of solar flares indicate prolonged existence of active regions on the solar disk with T e = 4–6 × 106K and emission measure ME 1048 cm–3. The profile of the Mg xii line indicates a macroscopic ion motion with a velocity up to 100 km s–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号