首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
堤防隐患探测一直是黄河治理中的一大技术难题,目前仍然是采用徒步拉网的方式对大堤隐患进行较直观的普查,而对大堤内部的隐患却无法探测到。为此,河南黄河河务局组织有关人员采用相对成熟的HWH-1型多功能数字直流激电仪对黄河下游堤防进行了生产性探测,本文对探测原理、探测方法、典型成果分析和存在的问题做了论述,并提出了建议。  相似文献   

2.
高密度电阻率法在水库堤坝隐患探测中的应用效果分析   总被引:1,自引:0,他引:1  
介绍了高密度电阻率法的原理、野外采集数据的方法以及资料解释等基本理论。通过对某水库大坝探测成果的分析,说明了高密度电阻率法在堤坝隐患探测中的可行性和有效性;提出用高密度电阻率法探测构造地裂缝的设想。  相似文献   

3.
利用电阻率层析成像技术,对辉县市常村镇尖圪头水库溶洞进行了探测。水库库底内的破碎、裂缝以及溶洞等隐患部位有清晰的反映。水库库底的隐患探测具有重要价值和意义,是水库安全的保障,而且关系到局部地区安全的大事。  相似文献   

4.
针对城建深基坑围护和水利防渗的地下连续墙病害隐患探测难题及特点,考虑到地连墙渗漏会造成墙体内外电阻率显著的变化,可引入地球物理探测方法中的直流电法技术,但传统地面电法的隐患探测效果不理想.考虑到地下连续墙施工时在墙体中设置测斜管,因此可开展地连墙内部缺陷的跨孔电阻率层析成像.而鉴于非线性反演具有对初始模型依赖性不强的特点,提出了基于贝叶斯反演理论的电阻率层析成像.在MATLAB开发环境下,编程完成的多组不同地电异常体的数值模拟反演计算表明,反演结果的信息丰富,对异常体的成像准确高效,且反演结果的稳定性好.  相似文献   

5.
综合物探技术在堤坝隐患探测中的应用   总被引:17,自引:8,他引:9  
本文给出笔者参与的浙江温岭东浦新塘隐患探测、椒江外沙海塘渗漏探测、缙云白马水库和玉环里墩水库坝体渗漏探测等几个实例,详细说明了综合物探技术在堤坝隐患探测中的作用、优点和需要注意的问题,具体分析了堤坝隐患的不同特征和综合物探方法的特点.工作实践表明:高密度电阻率法、探地雷达法、瑞雷波法及其综合运用能有效探测坝体缺陷,查明渗漏原因.同时,由于每种方法各有应用前提及局限性,故应针对可能的隐患特征,选用合适的探测方法及其组合,并努力提高信号采集和处理解释水平.  相似文献   

6.
土石坝渗漏问题是制约水库大坝安全运行的重要隐患,准确查明大坝渗漏的病因以及靶区的空间展布是有的放矢实施加固的关键.针对土石坝隐患的空间位置信息多变、周围介质复杂等难点,单一探测手段在识别病灶方面存在误判、漏判等问题,考虑到电阻率对水敏感的特点,提出联合并行电法和瞬变电磁法优化诊断土石坝渗漏隐患的思路.为查明戴家坞水库渗...  相似文献   

7.
以传导类电法勘探原理形成的走航式电法快速探测技术,采用迫近目标体的水下单极供电、多个测量电极线性排列测量电位的方式对水底隐患或掩埋良导目标体进行探测.利用ANSYS软件进行有限元数值模拟的结果表明:探测顶部离水面14m、半径5m的良导球体,当与水平电极系所在直线重合的测线过球顶正上方且距球心9m时,电位相对异常极大值超过8%;水槽物理模拟结果与数值模拟结果很好地吻合,综合验证了走航式电法快速探测技术的有效性.所测数据无需视电阻率转换,同时整套测量系统具有装置灵活与测量快速的特点,适合对江河堤坝和库区渗漏隐患以及水底金属结构物进行快速探测.  相似文献   

8.
岩石的电阻率差是电阻率法的物理前提,利用电阻率法研究断层是比较有效的方法。利用断层破碎带与周围岩石的电阻率差异,跨断层做了大量的实验数据,通过对比和分析,得出了研究破碎带与周围岩石的电性差异,寻找变化规律,研究其变化特征。对今后断层探测具有重要价值,对防震减灾具有重要意义。  相似文献   

9.
黄河下游堤防土程隐患探测技术与应用   总被引:3,自引:1,他引:2       下载免费PDF全文
黄河下游堤防是各个时期逐步修筑而成的,各次修筑质量参差不齐,加上历史决口堵复时使用的物料腐烂和有害动物破坏,近年来水量减少、断流增加,河道淤积严重,水流散乱,河势极其不稳,致使堤防工程形成众多险点隐患.本文根据黄河下游堤防工程特点,成功地运用高密度电阻率法技术探测堤防隐患,取得了较好的探测效果,为堤防工程的检测和监测提供了可靠的资料.  相似文献   

10.
黄河下游堤防工程隐患探测技术与应用   总被引:1,自引:1,他引:0       下载免费PDF全文
黄河下游堤防是各个时期逐步修筑而成的,各次修筑质量参差不齐,加上历史决口堵复时使用的物料腐烂和有害动物破坏,近年来水量减少、断流增加,河道淤积严重,水流散乱,河势极其不稳,致使堤防工程形成众多险点隐患.本文根据黄河下游堤防工程特点,成功地运用高密度电阻率法技术探测堤防隐患,取得了较好的探测效果,为堤防工程的检测和监测提供了可靠的资料.  相似文献   

11.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Water temperature is an important habitat factor in river ecosystems that exhibits the characteristics of continuous change. Dam construction disrupts the continuity of river water temperature and reset it, thus exerting sharp rise/decrease on the characteristics of water temperature change. The effect of a dam on river continuity is directly related to the dam size. To explain this relationship, two rivers in China were selected: one river without reservoirs and one river with cascade reservoirs. Through the analysis of the longitudinal change of water temperature in free-flowing rivers, we found that water temperature changes continuously and steadily in the longitudinal direction. Based on this, a temperature trend hypothesis in river was proposed, and the discontinuity of the water temperature in the reservoir section was evaluated. The results are as follows: (1) In mixed reservoirs, river water temperature remained as continuous as free-flowing rivers. However, the river water temperature had a large discontinuity in the stratified reservoir. (2) Water residence time was used as an indicator of the continuity of reservoir water temperature. (3) Selective withdrawal of stratified reservoirs in January could not remove the discontinuity caused by itself, but it worked in June.  相似文献   

13.
论证了广大坝抗震安全性研究的实践与发展现状。目前大坝在地震作用下的应力与变形分析方法主要有拟静力法和动力响应分析法,并依据大坝混凝土的抗拉强度判断大坝的安全性;各国规范体现的抗震设防弹念和大坝材料的容许应力差别很大。坝址河谷不同高程处地震动状态不尽相同、河谷两恻同一高程处地震动也不一样。混凝土材料的强度与加载速度、应变速率有关;地震时大坝不同部位的应变速率不相同、同一部位的应变速率也随时间变化;混凝土的动态强度既与应变速率有关。也与应变历史等其它因素有关。大坝河谷地震动的输入机理和模型研究、混凝土的动态强度的变化规律探索、大坝抗震安全性评价准则的完善与创新等将有待深入。通过以上内容针对性分析,提出了大坝抗震评价的一些合理建议、方法以及进一步的研究方向。  相似文献   

14.
B. Yellen  D.F. Boutt 《水文研究》2015,29(15):3261-3275
In humid regions, where gaining river conditions generally prevail, daily hydroelectric dam releases alter downstream surface water–groundwater interactions by reversing the head gradient between river and adjacent groundwater. Previously, it has been noted that artificial stage changes due to dam releases enhance hyporheic exchange. Here we investigate the regulated Deerfield River in northwestern Massachusetts at multiple scales to evaluate how changing downstream geologic conditions along the river mediate this artificial hyporheic pumping. Water budget analysis indicates that roughly 10% of bank‐stored water is permanently lost from the 19.5‐km river reach, likely as a result of transpiration by bank vegetation. An adjacent reference stream with similar dimensions and geomorphology, but without hydropeaking, shows predictable gaining conditions. Field observations from streambed piezometers and thermistors show that water losses are not uniform throughout the study reach. Riparian aquifer transmissivity in river sub‐reaches largely determines the magnitude of surface water–groundwater exchange as well as net water loss from the river. These newly documented losses from hydropeaking river systems should inform decisions by river managers and hydroelectric operators of additional tradeoffs of oscillatory dam‐release river management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Riverine sediments have played an important role in the morphological evolution of river channels and river deltas. However, the sediment regime in the many world's rivers has been altered in the context of global changes. In this study, temporal changes in the sediment regime of the Pearl River were examined at different time scales, that is, annual, seasonal, and monthly time scales, using the Mann–Kendall test. The results revealed that precipitation variability was responsible for monthly and seasonal distribution patterns of the sediment regime and the long‐term changes in the water discharge; however, dam operation has smoothed the seasonal distribution of water discharge and resulted in decreasing trends in the annual, wet‐season, and dry‐season sediment load series since the 1950s. Due to the different regulation magnitudes of dam operation, differences were observed in sediment regime changes among the three tributaries. In addition, human activities have altered the hysteresis of seasonal rating curves and affected hysteresis differences between increasing and decreasing water discharge stages. Sediment supply is an important factor controlling river channel dynamics, affecting channel morphology. From the 1950s to the 1980s, siltation was dominant in river channels across the West River and North River deltas in response to the sediment increases; however, scouring occurred in the East River deltas due to sediment reduction. Significant erosion occurred in river channels in the 1990s, which was mostly due to downcutting of the river bed caused by sand excavations and partly because of the reduced sediment load from upstream. Although sand excavations have been banned and controlled by authority agencies since 2000, the erosion of cross sections was still observed in the 2000s because of reduced sediment caused by dam construction. Our study examines the different effects of human activities on the sediment regime and downstream channel morphology, which is of substantial scientific importance for river management.  相似文献   

16.
The objective of this paper was to provide new insights into processes affecting riverbank filtration (RBF). We consider a system with an inflatable dam installed for enhancing water production from downstream collector wells. Using a numerical model, we investigate the impact of groundwater pumping and dam operation on the hydrodynamics in the aquifer and water production. We focus our study on two processes that potentially limit water production of an RBF system: the development of an unsaturated zone and riverbed clogging. We quantify river clogging by calibrating a time‐dependent riverbed permeability function based on knowledge of pumping rate, river stage, and temperature. The dynamics of the estimated riverbed permeability reflects clogging and scouring mechanisms. Our results indicate that (1) riverbed permeability is the dominant factor affecting infiltration needed for sustainable RBF production; (2) dam operation can influence pumping efficiency and prevent the development of an unsaturated zone beneath the riverbed only under conditions of sufficient riverbed permeability; (3) slow river velocity, caused by dam raising during summer months, may lead to sedimentation and deposition of fine‐grained material within the riverbed, which may clog the riverbed, limiting recharge to the collector wells and contributing to the development of an unsaturated zone beneath the riverbed; and (4) higher river flow velocities, caused by dam lowering during winter storms, scour the riverbed and thus increase its permeability. These insights can be used as the basis for developing sustainable water management of a RBF system.  相似文献   

17.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Withdrawal of water from a river into a canal involves the construction of a barrage or a dam across the river depending on whether the river is perennial or not. The design of the reservoir upstream of the dam and of the canal requires consideration of the sediment load carried by the river in case the river is sediment-laden. The basic equations concerning morphological changes in such rivers are discussed with particular reference to computation of reservoir sedimentation. The hydraulics of lined canals carrying wash load is examined from the point of view of limiting transport capacity and changes in frictional resistance. Lastly, the methods of design of sediment extraction devices like settling basins and vortex chambers are presented.  相似文献   

19.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
本文根据区域地质构造资料和区域地震活动特征,分析了新疆吉林台水电站区域稳定性。研究结果表明,该站不利之处是位于天山近代总隆起中喀什河断陷谷地内,喀什河活断裂又从库坝区附近通过。但坝址座落在石炭系组成的小断块上,喀什河断裂8级大震的重复发生间隔为2600—4000年,预测今后百年内库坝区发生直下型大震的可能性极小,其地震基本烈度为Ⅷ度是适宜的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号