首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375 °C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods.  相似文献   

2.
The various sources of pyrogenic and coalified carbon (black carbon, BC) in soil have considerable structural heterogeneity, making the quantification of BC a challenge. This study was aimed at evaluating the capability of different detection procedures to recover different types of BC from soil. We added defined quantities of urban dust (UD, NIST SRM1649a), diesel particulate matter (DPM, NIST SRM2975), charcoal, lignite, bituminous coal and wood to four topsoil samples. Mixtures were analyzed by way of chemo-thermal oxidation (CTO), thermal gradient oxidation (ThG), the benzene polycarboxylic acid method (BPCA) and mid-infrared spectroscopy (MIRS). CTO returned good quantification of soot BC in the pure DPM, yet the recovery of soot BC from soil was unsatisfactory (18–270%). ThG gave good precision but lower values for pure soot BC. It severely overestimated the BC content for all soil-standard mixtures. The BPCA method gave a low return for soot BC, but for the spiked soil it reliably detected charcoal and coalified C (69–107% avg. recovery) but underestimated soot BC (52–90% recovery of DPM). Linear coherence in specific MIR vibrations was found in one component soil-BC mixtures for each BC type. Applying these standard calibrations to multi-component mixtures allowed detecting charcoal and a quantification of soot BC (88% avg. recovery) via MIRS, but ignored the presence of diagenetic C. We see the greatest potential in differentiating soot from charcoal in soil by employing a combination of chemical and thermal oxidation and MIRS, while the differentiation from diagenetic C is not possible yet.  相似文献   

3.
Black carbon (BC) is considered ubiquitous in soil organic matter (OM) and therefore plays an important role in soil biogeochemistry. Its complexity, particularly within environmental matrices, presents a challenge for research, primarily as a result of techniques which may favor detection of certain functional group types rather than capturing total sample C. The objective of this study was to utilize carbon (C) 1s near edge X-ray absorption fine edge structure (NEXAFS) spectroscopy to characterize the C chemistry of a broad range of BC materials. Characteristic resonances in the NEXAFS spectra allowed direct molecular speciation of the total C chemistry of the reference materials, environmental matrices and potentially interfering materials, obtained from an earlier BC ring trial. Spectral deconvolution was used to further identify the functional group distribution of the materials. BC reference materials and soils were characterized by a large aromatic C region comprising around 40% of total absorption intensity. We were able to distinguish shale and melanoidin from BC reference materials on the basis of their unique spectral characteristics. However, bituminous coal shared chemical characteristics with BC reference materials, namely high aromaticity of more than 40% identified by way of a broad peak. Lignite also shared similar spectra and functional group distributions to BC reference materials and bituminous coal. We compared the results of spectral deconvolution with the functional group distributions obtained by way of direct polarization magic angle spinning (DPMAS) 13C nuclear magnetic resonance (NMR) spectroscopy. Correlations between aromatic type C values for DPMAS 13C NMR and NEXAFS gave r2 = 0.633 (p < 0.05) and the values for NEXAFS were around 30–40% lower than for 13C NMR. Correlations were also drawn between the aromatic C/O-alkyl C ratio values for the two methods (r2 = 0.49, p < 0.05). Overall, NEXAFS was applicable for a wide range of environmental materials, such as those measured, although some limitations for the technique were addressed.  相似文献   

4.
Amazonian Dark Earths (ADE) are a unique type of soils developed through intense anthropogenic activities that transformed the original soils into Anthrosols throughout the Brazilian Amazon Basin. We conducted a comparative molecular-level investigation of soil organic C (SOC) speciation in ADE (ages between 600 and 8700 years B.P.) and adjacent soils using ultraviolet photo-oxidation coupled with 13C cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR), synchrotron-based Fourier transform infrared-attenuated total reflectance (Sr-FTIR-ATR) and C (1s) near edge X-ray absorption fine structure (NEXAFS) spectroscopy to obtain deeper insights into the structural chemistry and sources of refractory organic C compounds in ADE. Our results show that the functional group chemistry of SOC in ADE was considerably different from adjacent soils. The SOC in ADE was enriched with: (i) aromatic-C structures mostly from H- and C-substituted aryl-C, (ii) O-rich organic C forms from carboxylic-C, aldehyde-C, ketonic-C and quinine-C, and (iii) diverse group of refractory aliphatic-C moieties. The SOC in adjacent soils was predominantly composed of O-alkyl-C and methoxyl-C/N-alkyl-C structures and elements of labile aliphatic-C functionalities. Our study suggests that the inherent molecular structures of organic C due to selective accumulation of highly refractory aryl-C structures seems to be the key factor for the biochemical recalcitrance and stability of SOC in ADE. Anthropogenic enrichment with charred carbonaceous residues from biomass-derived black C (BC) is presumed to be the precursor of these recalcitrant polyaromatic structures. Our results also highlight the complementary role that might be played by organic C compounds composed of O-containing organic C moieties and aliphatic-C structures that persisted for millennia in these anthropic soils as additional or secondary sources of chemical recalcitrance of SOC in ADE. These organic C compounds could be the products of: (i) primary recalcitrant biomolecules from non-BC sources or (ii) secondary processes involving microbial mediated oxidative or extracellular neoformation reactions of SOC from BC and non-BC sources; and stabilized through physical inaccessibility to decomposers due to sorption onto the surface or into porous structures of BC particles, selective preservation or through intermolecular interactions involving clay and BC particles.  相似文献   

5.
Stability of biomass-derived black carbon in soils   总被引:16,自引:0,他引:16  
Black carbon (BC) may play an important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO2. In order to fully evaluate the influence of BC on the global C cycle, an understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO2 evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO2 respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) and soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics of fresh BC. BC decomposed extremely slowly to an extent that it was not possible to detect chemical changes between youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation on the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), suggesting some degree of physical stabilization.  相似文献   

6.
Black carbon (BC) is an important residue of wildfires in boreal forests, but its characteristics depend on its formation conditions. The objective of this study was to characterize the chemical and physical properties of BC produced under controlled laboratory conditions, while mimicking a gradient of wildfire severity. We used fuels originating from mosses, ericaceous shrubs and spruce trees, as they constitute the major types available in boreal forests. We varied the maximum temperature (MT) from 75 to 800 °C, the duration of charring from 0.5 to 24 h and the abundance of O2. BC properties were analyzed using elemental analysis and proximate analysis, solid state 13C nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM) and surface area (SA) analysis. MT was the most significant factor affecting both chemical and physical changes. Results from 13C NMR spectroscopy indicated that 350 °C was a threshold temperature, above which spectra became dominated by aromatic structures for all fuels. Charring duration affected BC composition at both low (250 °C for 12 h vs. 24 h) and high (600 °C for 0.5 h vs. 6 h) MT. The presence of O2 influenced BC composition mainly at low MT (250 °C) and resulted in accelerated alkyl C degradation, accompanied with a distinct decrease in yield. Results from the SA analysis and the SEM micrographs showed that fuel type influenced BC physical properties, with moss-derived BC presenting higher surface area and microporosity than BC of woody origin.  相似文献   

7.
Charcoal is a key component of the Black Carbon (BC) continuum, where BC is characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an important source of palaeoenvironmental data, and of great interest as a potential carbon sink, due to its high apparent environmental stability. However, at least some forms of charcoal are clearly susceptible to environmental alteration and degradation over relatively short timescales. Although these processes have importance for the role of charcoal in global biogeochemistry, they remain poorly understood.Here we present results of an investigation into the susceptibility of a range of charcoal samples to oxidative degradation in acidified potassium dichromate. The study examines both freshly-produced charcoal, and charcoal exposed to environmental conditions for up to 50,000 years. We compare the proportion of carbon present in different forms between the samples, specifically with respect to the relative chemical resistance of these forms. This was undertaken in order to improve understanding of the post-depositional diagenetic changes affecting charcoal within environmental deposits.A wide range in chemical compositions are apparent both within and between the sample groups. In freshly-produced charcoal, material produced at 300 °C contains carbon with more labile forms than charcoal produced at ?400 °C, signifying a key chemical change over the 300-400 °C temperature range. Charcoal exposed to environmental depositional conditions is frequently composed of a highly carboxylated aromatic structure and contains a range of carbon fractions of varying oxidative resistance. These findings suggest that a significant number of the environmental charcoals have undergone post-depositional diagenetic alteration. Further, the data highlight the potential for the use of controlled progressive oxidative degradation as a method to characterize chemical differences between individual charcoal samples.  相似文献   

8.
The transformation and mobility of charcoal in a fire-impacted watershed   总被引:3,自引:0,他引:3  
The incomplete combustion of fossil fuels and biomass has resulted in the global-scale distribution and accumulation of black carbon (BC) in the environment. Recently, the molecular identity of BC in the dissolved phase has been distinguished from that of natural organic matter. However, many of the processes that control BC cycling remain unidentified. We investigate changes in soil charcoal particle morphology and chemical composition using surface area analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, chemical oxidation, and 13C NMR spectroscopy. A comparison of soil charcoals differing in age by 100 years shows that aged charcoal has lower specific surface areas, higher BC/OC ratios, direct associations with soil minerals and microbial biomass, and a greater abundance of non-aromatic carbon. The water-soluble portion of soil charcoal and dissolved organic matter (DOM) from the watershed were also characterized by electrospray ionization mass spectrometry. Aqueous charcoal extracts are comprised mostly of condensed aromatic ring structures (CARS) which are also present in soil pore, river, and ground water samples. We present indirect evidence and a chemical rationale for a microbial BC dissolution mechanism. Furthermore, the speciation of CARS in the soil solution versus river and ground water provides molecular evidence of reactivity in the dissolved phase. The dissolution and export of soil BC are presently unmeasured fluxes with important implications for the global carbon cycle.  相似文献   

9.
Black carbon (BC) in soils plays a key role of carrying hydrophobic pollutants like polycyclic aromatic hydrocarbons (PAHs). However, little is known about the spatial distribution, sources of BC and its relationship with PAHs in urban soils. We studied BC, total organic carbon (TOC) and PAHs concurrently in 77 soils collected from downtown area, suburban and rural area and industrial area of Shanghai, China. BC was determined by both chemical oxidation (dichromate oxidation, BCCr) and chemo-thermal oxidation (CTO-375, BCCTO). BC sources were identified qualitatively by BC/TOC concentration ratios and BC-cogenerated high molecular weight (HMW) PAH isomer ratios and quantitatively by principal component analysis followed by multiple linear regression (PCA-MLR). Results showed that BCCr concentration (4.65 g/kg on average) was significantly higher than BCCTO (1.91 g/kg on average) in Shanghai soils. BCCr concentrations in industrial area were significantly higher than those in other two. Stronger correlation was found between PAHs and TOC, BCCr than that between PAHs and BCCTO, which indicates the possibility of PAHs being carried by charcoal and other organic matters thus negating its exclusive dependence on soot. Charcoal was therefore suggested to be taken into account in studies of BC and its sorption of PAHs. BC/TOC ratios showed a mixed source of biomass burning and fossil fuel combustion. PCA scores of BC-cogenerated HMW PAHs isomer ratios in potential sources and soil samples clearly demonstrated that sources of BC in urban soils may fall into two categories: coal and biomass combustion, and traffic (oil combustion and tire wear). PCA-MLR of HMW PAHs concentrations in soil samples indicated that coal and oil combustion had the largest contribution to BC in urban soils while tire wear and biomass combustion were important in downtown and rural area, respectively, which indicated they were main sources of HMW PAHs and presumably of BC.  相似文献   

10.
The aim of this work was to investigate changes in molecular form and surface charge of black carbon (BC) due to long-term natural oxidation and to examine how climatic and soil factors affect BC oxidation. Black C was collected from 11 historical charcoal blast furnace sites with a geographic distribution from Quebec, Canada, to Georgia, USA, and compared to BC that was newly produced (new BC) using rebuilt historical kilns. The results showed that the historical BC samples were substantially oxidized after 130 years in soils as compared to new BC or BC incubated for one year. The major alterations by natural oxidation of BC included: (1) changes in elemental composition with increases in oxygen (O) from 7.2% in new BC to 24.8% in historical BC and decreases in C from 90.8% to 70.5%; (2) formation of oxygen-containing functional groups, particularly carboxylic and phenolic functional groups, and (3) disappearance of surface positive charge and evolution of surface negative charge after 12 months of incubation. Although time of exposure significantly increased natural oxidation of BC, a significant positive relationship between mean annual temperature (MAT) and BC oxidation (O/C ratio with r = 0.83; P < 0.01) explained that BC oxidation was increased by 87 mmole kg C−1 per unit Celsius increase in MAT. This long-term oxidation was more pronounced on BC surfaces than for entire particles, and responded 7-fold stronger to increases in MAT. Our results also indicated that oxidation of BC was more important than adsorption of non-BC. Thus, natural oxidation of BC may play an important role in the effects of BC on soil biogeochemistry.  相似文献   

11.
陕南丹凤茶房村黄土-古土壤剖面色度参数特征   总被引:2,自引:1,他引:1  
以丹凤县茶房村黄土-古土壤剖面为对象, 研究了该区黄土色度参数的变化规律及其主控因素。结果表明, L*(亮度)在黄土层中出现峰值, a*(红度)、a*/b*(红度/黄度)在古土壤层出现峰值, 色度参数的峰谷变化特征与该区黄土-古土壤地层旋回相吻合。L*(亮度)的变化与有机质含量密切相关;a*(红度)、a*/b*(红度/黄度)的变化则受控于铁氧化物的种类和含量。尽管三者的受控因素不同, 但都与风化成壤强度密切相关, 且与磁化率形成良好的对比, 可作为良好的气候代用指标, 间接地反映该区气候和成壤环境的变化规律。  相似文献   

12.
Black carbon (BC) is a poorly understood type of organic carbon but it is present in almost all environmental systems (i.e., atmosphere, soil and water). This work focuses on soot BC in desert soils and, in particular, urban soils from the Phoenix, Arizona metropolitan area. Soot BC is that fraction of black carbon formed from the condensation of gas phase molecules produced during burning. Soot BC in Phoenix area soils exhibits a range in both concentration and isotopic composition. Soot BC concentration in 52 soils (desert, agricultural and urban) ranges from 0.02–0.54 wt% and comprises from < 1 to as much as 89% of the soil organic carbon (OC). Soot BC concentrations are higher in urban soils than in desert or agricultural soils. The average isotopic composition of soot BC is −18‰ ± 3‰; this is an enrichment of 5.5‰ relative to bulk soil organic carbon. The distribution in concentration and variation in isotopic composition across the study area suggests soot BC in this arid-land city has multiple sources, including a significant fossil fuel component.  相似文献   

13.
Radiocarbon measurements of black carbon in aerosols and ocean sediments   总被引:1,自引:0,他引:1  
Black carbon (BC) is the combustion-altered, solid residue remaining after biomass burning and fossil fuel combustion. Radiocarbon measurements of BC provide information on the residence time of BC in organic carbon pools like soils and sediments, and also provide information on the source of BC by distinguishing between fossil fuel and biomass combustion byproducts. We have optimized dichromate-sulfuric acid oxidation for the measurement of radiocarbon in BC. We also present comparisons of BC 14C measurements on NIST aerosol SRM 1649a with previously published bulk aromatic 14C measurements and individual polycyclic aromatic hydrocarbon (PAH) 14C measurements on the same NIST standard.Dichromate-sulfuric acid oxidation belongs to the chemical class of BC measurement methods, which rely on the resistance of some forms of BC to strong chemical oxidants. Dilute solutions of dichromate-sulfuric acid degrade BC and marine-derived carbon at characteristic rates from which a simple kinetic formula can be used to calculate concentrations of individual components (Wolbach and Anders, 1989). We show that: (1) dichromate-sulfuric acid oxidation allows precise, reproducible 14C BC measurements; (2) kinetics calculations give more precise BC yield information when performed on a % OC basis (vs. a % mass basis); (3) kinetically calculated BC concentrations are similar regardless of whether the oxidation is performed at 23°C or 50°C; and (4) this method yields 14C BC results consistent with previously published aromatic 14C data for an NIST standard.For the purposes of intercomparison, we report % mass and carbon results for two commercially available BC standards. We also report comparative data from a new thermal method applied to SRM 1649a, showing that thermal oxidation of this material also follows the simple kinetic sum of exponentials model, although with different time constants.  相似文献   

14.
研究了海洋沉积物提取液中28种多氯联苯(PCBs)、16种多环芳烃(PAHs)和21种有机氯农药(OCPs)在硅胶-氧化铝复合净化柱上的同时净化与分离效果,结果表明:在充填4 cm3%去活化氧化铝-6 cm 3%去活化硅胶的8 mm i.d×15 cm固相萃取净化柱上,使用10 mL正己烷作为淋洗PCBs的分割点,可实现PCBs、PAHs和OCPs的满意分离,更有利于PCBs与高环数PAHs、极性较强OCPs的分离。继续用20 mL正己烷-二氯甲烷混合液(体积比1∶1)洗脱,28 PCBs、16种PAHs和21种OCPs均可获得有效回收,回收率分别为75%~110%、76%~115%、75%~130%。经海洋沉积物标准参考物质验证,该方法实用、可靠,流程简单,试剂消耗少,成本低,适用于海洋环境地质调查中基质复杂沉积物样品的定量分析。  相似文献   

15.
Carbon seams in the Witwatersrand System of South Africa host some of the richest gold concentrations in the world. A study of the microscopic characteristics in thin sections and acid residues, and of the chemical and physical nature of the carbon-bearing phases, was undertaken to gain some understanding of the biological precursors and thermal changes that have occurred since the seams were buried.The HCl---HF acid-resistant organic tissues in this Early Proterozoic coal are filamentous and spherical, which are typical morphologies for microorganisms. The tissues are carbonized black as would be expected for metamorphic rocks, so usual palynological techniques were of limited use. Therefore, the chemical and physical nature of the organic remains was studied by ratios, X-ray diffraction (XRD), 13C nuclear magnetic resonance (NMR), reductive chemistry, crosspolarization/magic angle spinning NMR (CP/MAS), and electron spin resonance (ESR).The ratios of the samples examined are similar to those of semi-anthracite and petroleum cokes from delayed cokers. XRD shows graphite is not present and that the gold is in elemental form, not chemically bound or intercalated between carbon planes. NMR shows that both aromatic and paraffinic carbons are present. Integration of the carbon NMR spectra suggests that 80% of the carbon is sp2-hybridized and 20% is sp3-hybridized. Reductive chemistry shows that the benzenoid entities are larger than common polynuclear aromatic hydrocarbons such as perylene and decacyclene. Dipolar dephasing CP/MAS NMR suggests the presence of two types of paraffinic carbons, a rigid methylene group and a rotating methyl group. The narrowing of the ESR linewidth between room temperature and 300°C shows that the materials examined have not previously been subjected to temperatures as high as 300°C.  相似文献   

16.
吉林省粉煤灰的物理和化学特征   总被引:1,自引:0,他引:1  
首次对吉林省10个大中型热电厂的粉煤灰特征进行较系统的研究,查明了各热电厂粉煤灰的化学成分、物理性质(密度、堆积密度、实密度、粒度)和物质组成。这些特征作为商品粉煤灰的重要经济技术参数决定粉煤灰利用方向,所以该项研究具有重要的意义。  相似文献   

17.
Existing methods for black carbon (BC) quantification measure different parts of the BC continuum, which complicates the calculation of a global BC budget. Benzenepolycarboxylic acids (BPCA) are used as molecular markers to quantify and characterize BC in soils and sediments using gas chromatography for BPCA separation (GC-BPCA). Recently, this method was refined for BC analysis in seawater using high performance liquid chromatography (LC-BPCA), which omits the cleaning steps and derivatization necessary in GC analysis. As yet it is not clear whether the two analytical methods yield similar results. Here we apply both methods to a suite of laboratory produced charcoals derived from wood and grass. We found systematically lower total BPCA-C contents and larger analytical variability for all tested charcoals when using GC-BPCA compared to LC-BPCA, the latter giving 1.5 ± 0.3 times higher yields for the charcoal samples formed at 275-700 °C. At lower and higher pyrolysis temperatures the differences between the two analytical methods were larger. The main reason for the differences between the two methods is the loss of BPCA during sample preparation for GC analysis. We propose a correction factor of 1.5 to account for at least part of these losses. No qualitative biases, i.e. towards more or less functionalized BPCAs, were observed between the two methods. The relative contribution of mellitic acid C to total BPCA-C, a measure for the degree of condensation of BC, was the same in the two analytical techniques. Qualitative differences between wood and grass charcoals as detected by both methods were small.  相似文献   

18.
日本南海海槽俯冲增生楔前缘的构造变形特征   总被引:1,自引:0,他引:1  
对增生楔不同压力—温度条件下的构造变形、流体活动、沉积特征、岩石物性和化学组成等多方面的直接观测,可以帮助分析俯冲带地震的蕴育和发生的环境与机理。通过参加IODP的日本南海海槽发震带研究项目(NanTroSEIZE)第一阶段316航次所收集到的大量第一手数据和资料,分别在4个站位上(C0004,C0006,C0007,C0008)对日本南海海槽增生楔前缘岩芯尺度上的构造变形进行了详细分析,并且讨论了岩芯尺度上的构造变形与增生楔中大尺度的非序列分支逆冲断层和前缘逆冲断层的构造变形之间的关系。发现逆冲变形不是只在大尺度的逆冲断层面上进行,而是弥散分布在主逆冲断层面、次级逆冲断层面以及断层面之间的更小的尺度上。小尺度构造的倾向与大尺度断层的倾向有较好的一致性,表明它们是在相同的应力场下所形成的。在增生楔浅部高角度的正断层比较发育,显示张性应力场特征,同时所获得的岩芯尺度上的地层倾角较大并倾向与反射地震以及区域地质分析结果非常吻合,而在深部,特别是在大尺度逆冲断层发育带附近,各种类型的断层、滑移变形带、节理等非常普遍,同时层理与劈理的产状的复杂变化更多地受控于复杂的逆冲断层带的作用。  相似文献   

19.
Very little is known about the macromolecular properties of biomass combustion residues referred to as black carbon (BC). Pyrolysis-gas chromatography–mass spectrometry (Py-GC/MS) was performed on: (i) peat from Spain at 400–1200 °C to investigate the effect of charring on pyrolysis fingerprint and (ii) natural charcoal from Laos in order to link molecular information to published chemical and reactivity parameters. Confirming earlier Py-GC/MS studies, the BC in the artificially charred peat and the natural charcoal produced predominantly benzene, toluene, C2-benzenes, PAHs and benzonitriles. Furthermore, some charcoal samples produced significant amounts of phenols, methoxyphenols, carbohydrate markers, n-alkanes and n-alkenes upon pyrolysis, reflecting non-charred and weakly charred biomass. A series of pyrolysis product ratios related to the degree of dealkylation of the pyrolysis products (benzene/toluene, naphthalene/C1-naphthalenes, C1-naphthalenes/C2-naphthalenes, benzofuran/C1-benzofurans and benzonitrile/C1-benzonitrile) increased with increasing artificial charring (peat) and, for the natural charcoal, these ratios were in accordance with established chemical and reactivity parameters related to charring intensity from other methods: proportion of aromatic C obtained from solid state 13C nuclear magnetic resonance spectroscopy (NMR), the proportion of charred material as estimated from NMR in conjunction with a molecular mixing model (NMR–MMM) and the resistance to acid dichromate oxidation. The alkyl side chains of aromatic pyrolysis products are probably inherited from short chain aliphatic C chains that cross link the predominantly aromatic building blocks of BC, and these linkages seem to disappear with increasing charring intensity. Thus, the degree of thermal alteration of BC can be discerned from the pyrolysis fragmentation pattern.  相似文献   

20.
Development of new techniques, enabling simultaneous determination of large numbers of elements in environmental samples, can force analysts to use certified reference materials that do not contain all the elements of interest. In this paper, the mass fractions of forty‐six major and trace elements, including rare earth elements (REE), are presented in one soil (NCS DC 77302 also known as GBW 07410) and five sediment (Metranal‐1, IAEA 405, MESS‐3, NCS DC 73309 also known as GBW 07311 and NCS DC 75301 also known as GBW 07314) certified reference materials determined by high resolution inductively coupled plasma‐mass spectrometry. The selected certified materials represent a spectrum of geological matrices often analysed in environmental studies. Measured elements include certified elements, elements listed with information values as well as new elements absent from certificates, including REEs and some other elements. REE + Y mass fractions in the river sediment reference material Metranal‐1 are reported for the first time. The results obtained are in agreement with available certified or information values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号