首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The simultaneous flow of immiscible fluids in porous media occurs in a wide variety of applications. The equations governing these flows are inherently nonlinear, and the geometries and material properties characterizing many problems in petroleum and groundwater engineering can be quite irregular. As a result, numerical simulation often offers the only viable approach to the mathematical modelling of multiphase flows. This paper provides an overview of the types of models that are used in this field and highlights some of the numerical techniques that have appeared recently. The exposition includes discussions of multiphase, multispecies flows in which chemical transport and interphase mass transfers play important roles. The paper also examines some of the outstanding physical and mathematical problems in multiphase flow simulation. The scope of the paper is limited to isothermal flows in natural porous media; however, many of the special techniques and difficulties discussed also arise in artificial porous media and multiphase flows with thermal effects.  相似文献   

2.
Numerical models for flow and transport in porous media are valid for a particular set of processes, scales, levels of simplification and abstraction, grids etc. The coupling of two or more specialised models is a method of increasing the overall range of validity while keeping the computational costs relatively low. Several coupling concepts are reviewed in this article with a focus on the authors’ work in this field. The concepts are divided into temporal and spatial coupling concepts, of which the latter is subdivided into multi-process, multi-scale, multi-dimensional, and multi-compartment coupling strategies. Examples of applications for which these concepts can be relevant include groundwater protection and remediation, carbon dioxide storage, nuclear-waste disposal, soil dry-out and evaporation processes as well as fuel cells and technical filters.  相似文献   

3.
A study of the effects of grid discretization on the migration of DNAPL within a discrete-fracture network embedded in a porous rock matrix is presented. It is shown that an insufficiently fine discretization of the fracture elements can lead to an overprediction of the volume of DNAPL that continues to migrate vertically at the intersection of a vertical and horizontal fracture. Uniform discretization of elements at the scale of one centimetre (or less) accurately resolved the density and capillary pressure components of the head gradient in the DNAPL. An alternative, non-uniform method of discretization of elements within the discrete-fracture network is presented whereby only fracture elements immediately adjacent to fracture intersections are refined. To further limit the number of elements employed, the porous matrix elements adjacent to the fracture elements are not similarly refined. Results show this alternative method of discretization reduces the numerical error to an acceptable level, while allowing the simulation of field-scale DNAPL contamination problems. The results from two field-scale simulations of a DNAPL-contaminated carbonate bedrock site in Ontario, Canada are presented. These simulations compare different methods of grid discretization, and highlight the importance of grid refinement when simulating DNAPL migration problems in fractured porous media.  相似文献   

4.
The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, . These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter . The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.  相似文献   

5.
6.
7.
Stochastic analysis of steady-state multiphase (water, oil, and air) flow in heterogeneous porous media was performed using the perturbation theory and spectral representation techniques. The gas phase is assumed to have constant pressure. The governing equations describing the flow of oil and water are coupled and nonlinear. The key stochastic input variables are intrinsic permeability,k, and the soil grain size distribution index, . Three different stochastic combinations of these two input parameters were considered. The perturbation/spectral analysis was used to develop closed-form expressions that describe stochastic variability of key output processes, such as capillary and individual phase pressures and specific discharges. The analysis also included the derivation of the mean flow equations and estimation of the effective flow properties. The impact of the spatial variability ofk and on the effective conductivities and the variances of pressures and specific discharges was examined.  相似文献   

8.
Barr DW 《Ground water》2001,39(5):646-650
The pressure driving flow through porous media must be equal to the viscous resistance plus the inertial resistance. Formulas are developed for both the viscous resistance and the inertial resistance. The expression for the coefficient of permeability consists of parameters which describe the characteristics of the porous medium and the permeating fluid and which, for unconsolidated isotropic granular media, are all measurable. A procedure is proposed for testing for the occurrence of turbulence and calculating the effective permeability when it occurs. The formulas are applied to a set of data from 588 permeameter runs ranging from laminar to highly turbulent. The equations fit the data from the permeameter closely through the laminar flow conditions and quite closely through the turbulent conditions. In the turbulent range, the plotting of the data separates into three distinct lines for each of the three shapes of particles used in the tests. For the porous medium and fluid of these tests, turbulence begins at a head gradient of about 0.1.  相似文献   

9.
Niven RK 《Ground water》2003,41(4):544-5; discussion 545-7
  相似文献   

10.
Studies of NAPL dissolution in porous media have demonstrated that measurement of saturation alone is insufficient to describe the rate of dissolution. Quantification of the NAPL–water interfacial area provides a measure of the expected area available for mass transfer and will likely be a primary determinant of NAPL removal efficiency. To measure the interfacial area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow in a Soltrol–water–glass bead system. The interfacial area is found to increase as the wetting phase saturation decreases, reach a maximum, and then decrease as the wetting phase saturation goes to zero. These results are compared to previous findings for an air–water–glass bead study; The Soltrol–water interfacial areas were found to peak at similar saturations as those measured for the air–water system (20–35% saturation range), however, the peak values were in some cases almost twice as high for the oil-water system. We believe that the observed differences between the air–water and oil–water systems to a large degree can be explained by the differences in interfacial tensions for the two systems.  相似文献   

11.
将时空守恒元/解元(CE/SE)方法推广到二维孔隙介质多相流问题的数值计算中,采用人工压缩法耦合速度和压力,同时结合杂交粒子水平集方法捕捉物质界面.提出一套完整的二维欧拉型孔隙介质非稳态多相不可压缩黏性流动计算方案.通过对溃坝和液滴在重力作用下的运动和变形问题的数值模拟,验证了方法的精度和有效性.在此基础上,提出了一个新的孔隙介质两相流物理模型——双层流体顶盖驱动方腔流.  相似文献   

12.
We study density-driven flow in a fractured porous medium in which the fractures are represented as manifolds of reduced dimensionality. Fractures are assumed to be thin regions of space filled with a porous material whose properties differ from those of the porous medium enclosing them. The interfaces separating the fractures from the embedding medium are assumed to be ideal. We consider two approaches: (i) the fractures have the same dimension, d, as the embedding medium and are said to be d-dimensional; (ii) the fractures are considered as (d − 1)-dimensional manifolds, and the equations of density-driven flow are found by averaging the d-dimensional laws over the fracture width. We show that the second approach is a valid alternative to the first one. For this purpose, we perform numerical experiments using finite-volume discretization for both approaches. The results obtained by the two methods are in good agreement with each other.  相似文献   

13.
《Advances in water resources》2005,28(10):1076-1082
Applications of the axisymmetric Boussinesq equation to groundwater hydrology and reservoir engineering have long been recognised. An archetypal example is invasion by drilling fluid into a permeable bed where there is initially no such fluid present, a circumstance of some importance in the oil industry. It is well known that the governing Boussinesq model can be reduced to a nonlinear ordinary differential equation using a similarity variable, a transformation that is valid for a certain time-dependent flux at the origin. Here, a new analytical approximation is obtained for this case. The new solution,, which has a simple form, is demonstrated to be highly accurate.  相似文献   

14.
This paper presents a nonlocal, derivative free model for transient flow in unsaturated, heterogeneous, and anisotropic soils. The formulation is based on the peridynamic model for solid mechanics. In the proposed model, flow and changes in moisture content are driven by pairwise interactions with other points across finite distances, and are expressed as functional integrals of the hydraulic potential field. Peridynamic expressions of the rate of change in moisture content, moisture flux, and flow power are derived, as are relationships between the peridynamic and the classic hydraulic conductivities; in addition, the model is validated. The absence of spacial derivatives makes the model a good candidate for flow simulations in fractured soils and lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, and slope stability.  相似文献   

15.
16.
This paper presents the mass, momentum and energy equations that can be applied to nonisothermal flow in porous media. These equations are derived by taking a suitable volume average of the microscopic equations. The resulting macroscopic equations are then appropriate for experimental comparison.  相似文献   

17.
A novel, non-intrusive fluorescence imaging technique has been used to quantitatively measure the pore geometry, fluid velocity, and solute concentration within a saturated, three-dimensional porous medium. Discrete numerical averages of these quantities have been made over a representative volume of the medium and used to estimate macroscopic quantities that appear in conventional continuum models of flow and transport. The approach is meant to illustrate how microscopic information can be measured, averaged, and used to characterize medium-scale processes that are typically approximated constitutively. The experimental system consisted of a clear, cylindrical column packed with clear spherical beads and a refractive index-matched fluid seeded with fluorescent tracer particles and solute dye. By illuminating the fluid within the column with a scanning planar laser beam, details of flow and concentration within the pore spaces can be quantitatively observed, allowing for three-dimensional, dimensional, time dependent information to be obtained at good resolution. In time dependent information to be obtained at good resolution. In the current experiment, volumetrically averaged velocities and void-to-volume ratios are first compared with bulk measurements of fluid flux and medium porosity. Microscopic measurements of concentration are then used to construct cross-sectionally averaged profiles, mean breakthrough curves, and direct measurements of the dispersive flux, velocity variance, and concentration variance. In turn, the dispersive flux measurements are compared with mean concentration gradients to provide a basis for confirming the Fickian dispersion model and estimating dispersion coefficients for the medium. Coefficients determined in this manner are compared with others based upon traditional length-scale arguments, mean breakthrough analyses, and curve fits with numerical simulations.  相似文献   

18.
19.
20.
This paper proposes a multiscale flow and transport model which can be used in three-dimensional fractal random fields. The fractal random field effectively describes a field with a high degree of variability to satisfy the one-point statistics of Levy-stable distribution and the two-point statistics of fractional Levy motion (fLm). To overcome the difficulty of using infinite variance of Levy-stable distribution and to provide the physical meaning of a finite domain in real space, truncated power variograms are utilized for the fLm fields. The fLm model is general in the sense that both stationary and commonly used fractional Brownian motion (fBm) models are its special cases. When the upper cutoff of the truncated power variogram is close to the lower cutoff, the stationary model is well approximated. The commonly used fBm model is recovered when the Levy index of fLm is 2. Flow and solute transport were analyzed using the first-order perturbation method. Mean velocity, velocity covariance, and effective hydraulic conductivity in a three-dimensional fractal random field were derived. Analytical results for particle displacement covariance and macrodispersion coefficients are also presented. The results show that the plume in an fLm field moves slower at early time and has more significant long-tailing behavior at late time than in fBm or stationary exponential fields. The proposed fractal transport model has broader applications than those of stationary and fBm models. Flow and solute transport can be simulated for various scenarios by adjusting the Levy index and cutoffs of fLm to yield more accurate modeling results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号