首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3-D seismic tomographic data are used together with field, core and well log structural information to determine the detailed 3-D architecture of fault zones in a granitic massif of volume 500×575×168 m at Mina Ratones area in the Albalá Granitic Pluton. To facilitate the integration of the different data, geostatistical simulation algorithms are applied to interpolate the relatively sparse structural (hard) control data conditioned to abundant but indirect 3-D (soft) seismic tomographic data. To effectively integrate geologic and tomographic data, 3-D migration of the velocity model from the time domain into the depth domain was essential. The resulting 3-D model constitutes an image of the fault zone architecture within the granitic massif that honours hard and soft data and provides an evaluation of the spatial variability of structural heterogeneities based on the computation of 3-D experimental variograms of Fracture Index (fault intensity) data. This probabilistic quantitative 3-D model of spatially heterogeneous fault zones is suitable for subsequent fluid flow simulations. The modeled image of the 3-D fault distribution is consistent with the fault architecture in the Mina Ratones area, which basically consists of two families of subvertical structures with NNE–SSW and ENE–WSW trends that displaces the surfaces of low-angle faults (North Fault) and follows their seismically detected staircase geometry. These brittle structures cut two subvertical dykes (27 and 27′ Dykes) with a NNE–SSW to N–S trend. The faults present high FI (FI>12) adjacent bands of irregular geometry in detail that intersect in space delimiting rhombohedral blocks of relatively less fractured granite (FI<6). Both structural domains likely correspond with the protolith and the damaged zone/fault core in the widely accepted model for fault zone architecture. Therefore, the construction of 3-D grids of the FI in granitic areas affected by brittle tectonics permits the quantitative structural characterization of the rock massif.  相似文献   

2.
The structure of a fault zone developed in granitic rocks can be established on the basis of the spatial variability of geological, geophysical and geochemical parameters. In the North Fault of the Mina Ratones area (SW Iberian Massif, Spain), fault rocks along two studied traverses (SR-2 and SR-3 boreholes) exhibit systematic changes in mineralogy, geochemistry, fabrics and microstructures that are related to brittle deformation and alteration of granite to form cataclasite and subsequent gouge. The spatial distribution and intensity of these changes suggest a North Fault morphology that is consistent with the fault-core/damage-zone model proposed by Chester et al. (1993) to describe a fault zone architecture. North Fault damage zone thickness can be defined by the development of mechanically related mesoscopic faults and joints, that produce a Fracture Index (FI)>10. High FI values are spatially correlated with relative low seismic velocity zones (VP<5 km/s and VS<2.5 km/s in the well-logs), more probably related to a high concentration of fractures and geochemical alteration produced by meteoric water-granite interaction along fault surfaces. This correlation is the base of a geostatistical model proposed in the final part of this study to image the fault zone architecture of a granitic massif.  相似文献   

3.
Tectonic fractures are important factors that influence oil and natural gas migration and accumulation within “buried hill” reservoirs. To obtain a quantitative forecast of the development and distribution of reservoir fractures in the Damintun Depression, we analyzed the characteristics of regional structural evolution and paleotectonic stress field setting. A reasonable geological model of the research area was built based on an interpretation of the geological structure, a test for rock mechanics, and experiment on acoustic emission. Thereafter, a three-dimensional paleotectonic stress field during the Yanshan movement was simulated by the finite element method. Rock failure criterion and comprehensive evaluation coefficient of fractures were used to determine the quantitative development of fractures and predict zones that are prone to fracture development. Under an intense Yanshan movement, high stress strength is distributed in the south and northeast parts of the study area, where stress is extremely high. The fracture development zones are mainly controlled by the tectonic stress field and typically located in the same areas as those of high maximum principal and shear stresses. The predicted areas with developed fractures are consistent with the wells with high fracture linear density and in locations with high-producing oil and gas wells.  相似文献   

4.
The aquifer of early Cretaceous age in the Meskala region of the Essaouira Basin is defined by interpretation of geological drilling data of oil and hydrogeological wells, field measurement and analysis of in situ fracture orientations, and the application of a morphostructural method to identify lineaments. These analyzes are used to develop a stratigraphic–structural model of the aquifer delimited by fault zones of two principal orientations: NNE and WNW. These fault zones define fault blocks that range in area from 4 to 150 km2. These blocks correspond either to elevated zones (horsts) or depressed zones (grabens). This structural setting with faults blocks of Meskala region is in accordance with the structure of the whole Essaouira Basin. Fault zones disrupt the continuity of the aquifer throughout the study area, create recharge and discharge zones, and create dip to the units from approximately 10° to near vertical in various orientations. Fracture measurements and morphometric-lineament analyzes help to identify unmapped faults, and represent features important to groundwater hydraulics and water quality within fault blocks. The above geologic features will enable a better understanding of the behaviour and hydro-geo-chemical and hydrodynamics of groundwater in the Meskala aquifer.  相似文献   

5.
A major cost in exploring the upper 1–2 km of crystalline crust with reflection seismics is the drilling required for explosive sources. By reducing the charge size to a minimum, shallow inexpensive shotholes can be drilled with handheld equipment. Here, we present results from a full-scale test using small charges for high-resolution seismic surveying over a nuclear waste disposal study site (not an actual site). Two 2–2.5-km-long crossing profiles were acquired in December 1999 with 10-m shot and geophone spacing in the Laxemar area, near Oskarshamn in southeastern Sweden. After standard processing, including dip moveout (DMO), several subhorizontal to moderately dipping reflections are imaged. Many of the dipping ones can be correlated to fracture zones observed in a ca. 1700-m-deep borehole where the profiles cross and/or to fracture zones mapped on the surface. The imaged fracture zones form a complex 3D pattern illustrating the necessity of having 3D control before interpreting seismic reflection data. Analyses of sonic and density logs from the borehole show that greenstones have significantly higher impedances than the more dominant granite found in the borehole (granite/greenstone reflection coefficient is +0.065). These greenstones may contribute to the reflectivity when associated with fracture zones. In some cases, where they are present as larger subhorizontal lenses, they may be the dominant source of reflectivity. A set of north-dipping (10°) reflectors at 3–3.5-km depth can be correlated to a similar set observed below the island of Ävrö about 3 km to the east.  相似文献   

6.
The objective of this paper is to estimate water seepage from the upper reservoir of Azad pumped storage power plant (PSPP), based on combined geotechnical investigations and geostatistical methods. Azad PSPP has been located in Sanandaj Province in Iran. In order to select the optimum water tightening alternative, such as clay blanket, concrete cover (or concrete lining), geomembrane, asphalt cover etc, estimation of water seepage from the reservoir is essential. Six exploratory boreholes were drilled at the pumped storage reservoir area and permeability tests (Lugeon tests) were conducted in all of them. Records at the boreholes have been considered as the main source for seepage calculations. Due to expansion of upper reservoir and a few boreholes, distribution of permeability and permeability changes in the reservoir area is not indicator of reservoir. In this research using geostatistical method (Kriging), lugeon values have been estimated for walls of reservoir. According to correspondence between estimated permeability distribution and geological conditions, the estimated values are acceptable. In addition results show that in about 60% of tests, permeability is very high and potential of water seepage is very high. Seepage was estimated for reservoir by using both analytical (vedernikov method) and numerical method. Results from both methods are very close and the average of seepage is around 280000 m3/day. From the results and general geological considerations, seepage is concentrated at fault zones. Results show that by using appropriate permeability distribution, the estimated values of water seepage are reliable. Due to the high amount of water seepage and economic importance of water in this region, water tightening is necessary.  相似文献   

7.
Knowledge of the existence of fracture zones, their extent, intensity and direction is very useful for assessing groundwater in hardrock regions and in this context geophysical methods are widely accepted as a powerful means of study. In the modern era of exploration, application of the Resistivity Imaging technique gives a new opportunity for groundwater study in hardrock regions. Exploration surveys were conducted at one of the important sites in Maheshwaram watershed, Andhra Pradesh, India with a multielectrode resistivity imaging system. To reduce the ambiguity of geophysical interpretation some complementary geophysical studies like ground Magnetic and VLF were also carried out.A number of 2D resistivity images were prepared in a grid pattern, which clearly show the weathered and fractured zones in different parts of the study area. With the help of all 2D profiles a quasi-3D image has been created, which indicates the orientation and extension of the fracture zone in a horizontal as well as vertical direction in the study area. Strong agreement exists among the anomalies identified using the ground magnetic, VLF and resistivity imaging methods. The litholog data available in the study area also helps to interpret geophysical results to find a potential groundwater bearing zone in that area.  相似文献   

8.
Closely spaced, sub-parallel fracture networks contained within localized tabular zones that are fracture corridors may compromise top seal integrity and form pathways for vertical fluid flow between reservoirs at different stratigraphic levels. This geometry is exemplified by fracture corridors found in outcrops of the Jurassic Entrada Formation in Utah (USA). These fracture corridors exhibit discolored (bleached) zones, interpreted as evidence of ancient fracture-enhanced circulation of reducing fluids within an exhumed siliciclastic reservoir-cap rock succession. Extensive structural and stratigraphic mapping and logging provided fracture data for analysis with respect to their occurrence and relationships to larger faults and folds. Three types of fracture corridors, representing end-members of a continuum of possibly interrelated structures were identified: 1) fault damage zone including segment relays; 2) fault-tip process zone; and 3) fold-related crestal-zone fracture corridors. The three types exhibit intrinsic orientations and patterns, which in sum define a local- to regional network of inferred vertical and lateral, high-permeability conduits. The results from our analysis may provide improved basis for the evaluation of trap integrity and flow paths across the reservoir-cap rock interface, applicable to both CO2 storage operations and the hydrocarbon industry.  相似文献   

9.
Soil–gas measurements of different gas species were performed in two distinct areas of the Corinth Gulf Rift (Greece): the Aigion-Neos Erineos-Lambiri (ANEL) fault zone and the Rion-Patras fault zone. Both zones lie in one of the most seismically active areas of the Euro-Mediterranean region, where a fast-opening continental rift is located. In particular, the geochemical investigations were focused on fault segments and fracture systems previously inferred by geomorphological, lithological and structural studies.In this work the applicability of soil–gas geochemistry surveys for the exploration of buried/hidden faults was tested by using various statistical methods. Moreover, a comprehensive geostatistical treatment of the collected data provided new insights into the control exerted by active structures on deep-seated gas migration towards the surface. In both investigated areas, the highest 222Rn and CO2 concentration peaks correspond with zones where the interaction among fracture and fault segments was inferred by structural and morphological methods. This indicates a clear correlation between the shape and orientation of the anomalies and the different attitude and kinematic behavior of the faults recognized in the two areas. Furthermore, obtained results show that gases migrate preferentially through zones of brittle deformation by advective processes, as suggested by the relatively high rate of migration needed to obtain anomalies of short-lived 222Rn in the soil pores.  相似文献   

10.
随着矿区浅部矿的日益减少,深部找矿越来越受到重视,三维地质建模技术在成矿预测、资源定量评价等方面得到了广泛的应用.本文利用三维地质建模平台GOCAD中的三维建模技术及地质统计学等方法,基于收集测试得到的地质图、钻孔和采样点的地层、岩性、构造、品位等数据,构建了西沟铅锌银金矿区的三维地质模型,包括断裂构造模型、矿体模型及...  相似文献   

11.
Most evaluations of the contaminant retardation processes likely to be important in geological disposal (e.g. for high level radioactive waste (HLW)) consider only the present characteristics of fractures and associated mineral infills. Relatively little attention has been given to possible long-term changes in these features, and their influence on groundwater flow. The work reported here seeks to provide analogous evidence that such changes are not likely to be important and hence to improve confidence in the presently adopted evaluation methodology and its long-term applicability.

In the orogenic belt that is formed by the Japanese islands, there are wide areas of crystalline rock. The rocks in each area have a distinctive age sequence which is partly reflected in the characteristics of the fracture systems and associated mineral fillings that occur. These characteristics generally imply that groundwater and solutes can be conducted through fracture networks, except in the cases of fault zones or crushed zones. The structural and mineralogical features of these networks readily illustrate how certain contaminants might react and be retarded by the fracture fillings and open pore geometry, due to chemical sorption and/or physical retardation.

Here, we describe the fracture systems developed in crystalline rocks with different ages that are intruded into the Japanese orogenic belt. The aim is to build a model for the long-term fracturing process and hence to evaluate fracture ‘stability’. In particular, the comparisons are made between the fracture geometries and the frequencies observed in the 1.9–0.8 Ma Takidani Granodiorite (the youngest exposed pluton in the world), the ca. 67 Ma Toki Granite and the ca. 117 Ma Kurihashi Granodiorite located in central to northwest Japan. The observations show that all these crystalline rocks have similar fracture frequencies, with 1 to 2 fractures per meter in the massive part of rock bodies. Mineralogical studies and dating analyses of fracture fillings also suggest that fractures are relatively physically stable. Major new fractures tend not to be created in the massive part of rock bodies even when a pluton has been subjected to the regional stresses of plate movements with a duration of about 100 Ma. The results show the unique characteristics of the fracture forming process and the relatively stable geometries of fracture network systems in crystalline rocks distributed within the orogenic belt. This analogue also enables us to provide a model to build confidence in a technical approach applicable for modeling of hydrogeology and geology over long time scales under the orogenic stress field present in Japan. The model may also be useful for other stable tectonic settings as well as for a characterizing sites in crystalline rocks for the possible geological disposal of HLW and other toxic wastes.  相似文献   


12.
The tectonic scheme of the Siberian Craton proposed in this paper is compiled on the basis of a geological map of the craton prepared from numerous magnetometric maps and gravity measurements on various scales, the scheme of axes of magnetic anomalies, and the synthesis of geological information on the exposed territories. The shields and platform territories of the ancient Siberian Craton comprises Archean blocks and Paleoproterozoic foldbelts. The granite-greenstone terranes and granulite-gneiss domains were formed in the Meso- and Neoarchean. The granite-greenstone terranes exposed and overlapped by sedimentary cover are identical, although they generally differ in internal structure and rock compositions both at the infra- and supracrustal levels. The Archean granulite-gneiss domains are recognized either as special tectonic units or as deep sections of granite-greenstone terranes. Two groups of the Paleoproterozoic collisional belts that amalgamated separate Archean blocks of the Siberian Craton into a common stable structural unit evolved 2.1–1.9 and 1.9–1.8 Ga ago. Three types of deep faults arose in the Paleoproterozoic: (1) translithospheric fault zones as boundaries of tectonic blocks and collisional belts, (2) intracrustal fault zones that originated as a result of nonuniform uplift of particular segments of the common plate, and (3) transcrustal zones formed in a plate that overrode another, plunging plate.  相似文献   

13.
Almost all collapses of rock slopes especially in open pit mines are related to discontinuities such as bedding planes, faults and major joints.Geostatistical assessments can be used for understanding the distribution of regionalized variables in any spatial study. In this paper3D spatial dispersion of the fault planes in the Gole Gohar open pit iron mine, located in Kerman province, south east of Iran, is modeled. Then, regionalized variable theory is used to analyze and interpret spatial distribution of the following geotechnical parameters: Geological strength index (GSI), Rock quality designation (RQD), Cohesion (C) and angle of internal friction (f). In order to define regionalized variable distribution, variogram functions were determined for identifying the regional behavior. Structural analysis of variograms showed that the mentioned parameters have spatial structures that make it possible to set up a geostatistical model to predict their values for each non-sampled block on the pit wall. Results showed that there is a relation between the low values of geotechnical parameters and the existence of discontinuities around the pit area. The role of discontinuities in the occurrence of collapses in the area was clearly demonstrated by comparing the estimated parameters models and the model of discontinuities dispersion.  相似文献   

14.
高庚  李艳杰 《地质科学》2011,46(4):942-957
塔木察格盆地位于蒙古国东部,与中国的海拉尔盆地同属一个盆地,为叠置于兴蒙造山带之上的拉张一挤压型中新生代陆相断陷盆地.南贝尔凹陷位于海拉尔一塔木察格盆地中部断陷带的中部,面积为3 200 km2.南贝尔凹陷东次凹南一北洼槽构造转换带位于南贝尔凹陷东次凹中部,为反向聚敛叠覆型构造转换带,是重要的含油气构造带.转换带对油气...  相似文献   

15.
Occurrence of springs in massifs of crystalline rocks,northern Portugal   总被引:1,自引:0,他引:1  
An inventory of artesian springs emerging from fractures (fracture springs) was conducted in the Pinh?o River Basin and Morais Massif, northern Portugal, comprising an area of approximately 650 km2. Over 1,500 springs were identified and associated with geological domains and fracture sets. Using cross-tabulation analysis, spring distributions by fracture sets were compared among geological environments, and the deviations related to differences in rock structure and, presumably, to differences in deformational histories. The relation between spring frequencies and rock structures was further investigated by spectral determination, the model introduced in this study. Input data are the spring frequencies and fracture lengths in each geological domain, in addition to the angles between fracture strikes and present-day stress-field orientation (θ). The model's output includes the so-called intrinsic densities, a parameter indexing spring occurrence to factors such as fracture type and associated deformational regime and age. The highest densities (12.2 springs/km of lineament) were associated with young shear fractures produced by brittle deformation, and the lowest (0.1) with old tensional and ductile fractures. Spectral determination also relates each orientation class to a dominant structural parameter: where spring occurrence is controlled by θ, the class is parallel to the present-day stress-field orientation; where the control is attributed to the length of fractures, the spring occurrence follows the strike of large-scale normal faults crossing the region. Electronic Publication  相似文献   

16.
Darfur region is one of the most vulnerable areas in Sudan that suffer from shortage in water supply. The objective of the current study is to utilize remote sensing techniques combined with the structural analysis to recognize the most potential fracture zones for groundwater occurrences in the hard rock terrains of Darfur region. The old ductile deformation features in Darfur region delineated from Landsat imageries are used for the structural analysis to determine and classify the fractures in the hard rock terrains of the region. Based on the structural analysis conducted in this study, Darfur region was divided into two domains—the western domain of the pre-Pan-African age that is affected by the two deformational phases (D1 and D2), and the eastern domain represented by the basement related to the Pan-African orogeny. The most potential fractures in the western domain are in the NW–SE and NE–SW trends that classified as extensional and release open fractures for the deformations D1 and D2. In the eastern domain, the main potential fractures for groundwater occurrence are in E–W and N–S directions that are classified as extensional and release open fractures of the deformation D3. From the results of the structural analysis, the main potential fracture systems in Darfur region trend are NW–SE, NE–SW, and E–W directions. The intersections of these fracture systems are the most promising targets for drilling, with consideration of the topography, the rates of recharge, and the underlying geology. The geophysical data and boreholes information in Zalingei and north of El Geneina areas in West Darfur confirm the results obtained from remote sensing data and structural analysis, in which the NW–SE, NE–SW, and E–W fractures trends are the most potential fractures in Darfur region.  相似文献   

17.
The Archean Bird River greenstone belt (BRGB) is located on the southwestern edge of the Superior Province between the 3.2 Ga old Winnipeg River subprovince to the south and the metasedimentary belt of the English River subprovince (ERSP) to the north. This position between two major subprovinces makes the BRGB a primary target for investigating the geodynamic and kinematic evolution of a major structural boundary. New structural and geochronological data have allowed us to present an evolutionary framework for the southern boundary of the North Caribou superterrane. The BRGB underwent 3 main deformation phases. The D1 event took place ca. 2698 Ma and displays a north-side-up shearing. The D2 event, occurring at ca. 2684 Ma in a transpressive context, presents a complex structural pattern mixing vertical tectonics in the BRGB and strike-slip tectonics along the boundaries of the greenstone belt with other subprovinces. Between the BRGB and the ERSP, the 2832–2858 Ma old Maskwa batholith acted as a rigid passive block during the collision and marks the boundary between pure dextral strike-slip tectonics along his northern boundary with the ERSP and vertical south-side-up motion in the BRGB. The BRGB can be considered as a pop-up structure with anastomosed shear zones displaying different horizontal offset according to the orientation of the shear zones. The southern boundary with the Winnipeg River subprovince is represented by a sinistral south-side-up shear zone. The same pattern is found at the regional scale where major shear zones acted as a conjugate set in the horizontal plane. At ca. 2640 Ma, the D3 event occurred in a general dextral transpressive tectonic regime coeval with the emplacement of rare-elements pegmatitic plutons in a still hot (400–500 °C) country rock. The geodynamical and mechanical significance of the partitioning between pure strike-slip tectonics in the English River subprovince and vertical motion in the BRGB can be explained by the rheological behaviour of a hot and weak lithosphere undergoing transpressive strain. The structural framework of the BRGB is the result of strong interactions between hot and weak domains, coeval with widespread plutonism, and a rigid older domain (Maskwa batholith) during the D2 transpressive event.  相似文献   

18.
文中以甘肃北山花岗岩中发育的构造裂隙(主要指节理尺度)为研究对象,应用地质统计分析理论,以裂隙面密度P21 作为地质统计分析的区域性变量,探索花岗岩岩体裂隙空间分布模式。结果表明:甘肃北山芨芨槽候选场址区域内花岗岩岩体裂隙空间分布具有明显的各向异性特征,变异主轴方向明显; 变异主轴区域内的裂隙分组地质统计特征显示,区域内第1分组裂隙并非是传统意义上的均匀随机分布,而是具有明显的空穴效应特征,应该在三维裂隙网络建模工作中予以考虑。本文在考虑本组裂隙空穴效应特征基础上,针对三维裂隙网络建模方法提出了新的建议。  相似文献   

19.
As part of a larger regional research program “KarstEAU”, the authors have applied electrical resistivity tomography (ERT) techniques to characterize heterogeneities in the Port-Miou coastal karst aquifer (Cassis, SE France). Field surveys were carried out on intensely fractured and karstified Urgonian carbonates. Extensive research has characterized macro- and micro-scale geology of the Port-Miou area and particularly underground water-filled conduits and fault/fracture and karst systems within a former quarry. The authors applied 2D ERT along two surface profiles of length 420 and 595 m to test capability for delineating subsurface conduits and possibly relationship between conduit and fault/fracture/karst orientation; and 3D ERT with a dense 120 electrode array at 1 m spacing (11 × 10 m) was applied over an area of the quarry that had been profiled using 3D georadar and which has had intensive nearby structural geological interpretation. The 2D profiling imaged several underground conduits at depths to >50 m below ground surface and below sea level, including possibly the main Port Miou submarine spring and smaller springs. The 2D profiling within the quarry provided a better understanding of the connectivity between major fractures and faults on the quarry walls and secondary springs along the coast supporting flow of the secondary springs along interpreted fracture orientations. In addition, 2D inversion-derived conductivity models indicate that high resistivity zones above sea-level are associated with non-saturated zones and low resistivity anomalies in the non-saturated zone are associated with residual clays in paleokarsts. A partitioned lower resistivity zone below sea-level can be associated with a higher porosity/permeability zone with fractures and karstic features. Inversion models of the dense 3D ERT data indicate a higher resistivity volume within the larger surveyed block. The survey characterized the non-saturated zone and the ERT resistivities are correlated with karst features interpreted by 3D georadar and visible in the inferior wall of the quarry.  相似文献   

20.
老挝Xiangkok地区金矿找矿前景浅析   总被引:2,自引:0,他引:2  
老挝Xiangkok地区位于Ⅱ级澜沧江弧形构造带在金三角地区的大拐弯处,属于西盟一临沧成矿带的南延。本区分布有大量民采过的金矿(化)点。区内Ⅰ型花岗岩类发育,其主要围岩是时代不明的粉砂岩与页岩互层。区内初糜岩化的韧性剪切带发育,并往往叠加了脆性断裂。Xiangkok金矿点金矿化体主要赋存于花岗闪长岩及其围岩的破碎带和叠加了脆性断裂的剪切带中,呈含金硫化物石英脉、含金硫化物硅化角砾岩产出,可能属与花岗岩有关的构造蚀变岩型一石英脉型金矿。从现有资料分析,Xiangkok地区金矿有着良好的找矿前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号