首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 170 毫秒
1.
1. IntroductionInvestigations about atmospheric LFW have been a focus of research since Madden andJulian/s outstanding analysis works (1971, 1972). Many dynamical and thermal mechanisms(Chao et al., 1996; Fu et al., 1998; Hendon et al., 1998; Krishnamurti et al., 1988; Lau andChan, 1988) have been advised to explain LFW. Among them are oceanic effects, such as SSTeffect, thermal forcing and others. Usually atmosphere and ocean are taken as a coupled system, which is used to explain ENS…  相似文献   

2.
Sea surface temperature (SST) anomalies can induce anomalous convection through surface evaporation and low-level moisture convergence. This SST forcing of the atmosphere is indicated in a positive local rainfall–SST correlation. Anomalous convection can feedback on SST through cloud-radiation and wind-evaporation effects and wind-induced oceanic mixing and upwelling. These atmospheric feedbacks are reflected in a negative local rainfall–SST tendency correlation. As such, the simultaneous rainfall–SST and rainfall–SST tendency correlations can indicate the nature of local air–sea interactions. Based on the magnitude of simultaneous rainfall–SST and rainfall–SST tendency correlations, the present study identifies three distinct regimes of local air–sea interactions. The relative importance of SST forcing and atmospheric forcing differs in these regimes. In the equatorial central-eastern Pacific and, to a smaller degree, in the western equatorial Indian Ocean, SST forcing dominates throughout the year and the surface heat flux acts mainly as a damping term. In the tropical Indo-western Pacific Ocean regions, SST forcing and atmospheric forcing dominate alternatively in different seasons. Atmospheric forcing dominates in the local warm/rainy season. SST forcing dominates with a positive wind-evaporation feedback during the transition to the cold/dry season. SST forcing also dominates during the transition to the warm/rainy season but with a negative cloud-radiation feedback. The performance of atmospheric general circulation model simulations forced by observed SST is closely linked to the regime of air–sea interaction. The forced simulations have good performance when SST forcing dominates. The performance is low or poor when atmospheric forcing dominates.  相似文献   

3.
Based on the air-sea interface heat fluxes and related meteorological variables datasets recently released by Objectively Analyzed Air-Sea Fluxes (OA Flux) Project of Woods Hole Oceanographic Institution, as well as the outgoing longwave radiation and surface wind datasets from National Oceanic and Atmospheric Administration, the seasonal dependence of local air-sea interaction over the tropical western Pacific warm pool (referred to the region (1o-6oN, 144o-154oE)) is revealed and the probable impacts of remote forcing on the air-sea interaction are examined. The results indicated the dominance of oceanic forcing with the significant impact of ENSO in March and that of atmospheric feedback without notable influence of remote forcing in June. While the interannual variability of sea surface temperature anomaly (SSTA) is larger than that of SSTA tendency when oceanic forcing is dominant, the opposite is true when atmospheric feedback is dominant. The magnitude of the oceanic forcing of the atmosphere tends to decrease in March with the occurrence of ENSO, though ENSO has little influence on the atmospheric feedback to the ocean in June. The local air-sea interaction is substantially the same before and after the removal of the effect of Indian Oceanic Dipole. The reduction of shortwave radiation fluxes into the western Pacific warm pool, due to the enhanced overlaying convection in March associated with ENSO, leads to the decline of SST tendency that will weaken the oceanic forcing of the atmosphere.  相似文献   

4.
Tropical–extratropical climate interactions are studied by idealized experiments with a prescribed 2°C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells’ strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. CCR contribution number 829; DAS-PKU contribution number 002.  相似文献   

5.
 Understanding natural atmospheric decadal variability is an important element of climate research, and here we investigate the geographic and seasonal diversity in the balance between its competing sources. Data are provided by an ensemble of multi-decadal atmospheric general circulation model experiments, forced by observed sea surface temperatures (SSTs), and verified against observations. First, the nature of internal atmospheric variability is studied. By assessing its spectral character, we refute the idea that internal modes may persist or oscillate on multi-annual time-scales, either through mechanisms purely internal to the atmosphere, or via coupling to the land surface; instead, they behave as a white noise process. Second, and more importantly, the role of oceanic forcing, relative to internal variability, is investigated by extending the ‘analysis of variance’ technique to the frequency domain. Significance testing and confidence intervals are also discussed. In the tropics, atmospheric decadal variability is usually dominated by oceanic forcing, although for some regions less so than at interannual time-scales. A moderate oceanic impact is also found for some extratropical regions in some seasons. Verification against observed mean sea-level pressure (MSLP) data suggests that many of these influences are realistic, although some model errors are also revealed. In other mid- and high-latitude regions, local simulated decadal variability is dominated by random processes, i.e. the integrated effects of chaotic weather systems. Third, we focus on the mechanisms of decadal variability in two specific regions (where the model is well behaved). Over the tropical Pacific, the relative impact of SSTs on decadal MSLP is strongly seasonal such that it peaks in September to November (SON). This is explained by noting that the model atmosphere is responsive to SSTs a little farther west in SON than it is in other seasons, and here it picks up relatively more decadal power from the ocean (the western Pacific being less dominated by ENSO time-scales), causing atmospheric ‘signal-to-noise ratios’ to be enhanced at decadal timescales in SON. Over southern North America, a strong SST impact is found in summer and autumn, resulting in an upward trend of MSLP over recent decades. We suggest this is caused by decadal SST variability in the Caribbean (and to some extent the tropical northeast Pacific in summer), which induces anomalous convective heating over these regions and hence the wider MSLP response. Received: 30 November 1998 / Accepted: 22 April 1999  相似文献   

6.
采用1948—2014年NCEP/NCAR大气再分析资料以及延伸重建海温资料,基于大气海洋间不同的主导关系对冬季北太平洋大范围海温异常进行分类,探究其相应的海气结构特征。结果表明:1)大气影响海洋的个例多于海洋影响大气的个例,即在冬季北太平洋大气强迫海洋占主要地位,但也存在海洋对大气的反馈作用。2)对于大气影响海洋而言,SST(Sea Surface Temperature)暖异常区上空主要伴随着东北—西南走向的相当正压高低压异常(东北高西南低),对应东南风异常以及显著的深厚暖异常,表现出相当正压暖/脊结构,冷异常情况与此相反。SST异常为净热通量异常与风速异常共同作用引起。3)对于海洋影响大气而言,在SST暖异常区上空西部为南北向高低压异常(北高南低),东部为低压异常,对应偏东风异常。在SST冷异常区上空为偶极型的南北向高低压异常(南高北低),对应偏西风异常;位势高度异常表现出相当正压结构且较大气影响海洋时相对偏弱,大气暖(冷)温度异常比较浅薄且主要局限于对流层低层。4)海洋温度结构异常主要表现为,在大气影响海洋时海温异常由表层下传,海洋影响大气时为上下一致的温度异常。  相似文献   

7.
Three ensembles of AMIP-type simulations using the Arpege-climat coupled land–atmosphere model have been designed to assess the relative influence of SST and soil moisture (SM) on climate variability and predictability. The study takes advantage of the GSWP2 land surface reanalysis covering the 1986–1995 period. The GSWP2 forcings have been used to derive a global SM climatology that is fully consistent with the model used in this study. One ensemble of ten simulations has been forced by climatological SST and the simulated SM is relaxed toward the GSWP2 reanalysis. Another ensemble has been forced by observed SST and SM is evolving freely. The last ensemble combines the observed SST forcing and the relaxation toward GSWP2. Two complementary aspects of the predictability have been explored, the potential predictability (analysis of variance) and the effective predictability (skill score). An analysis of variance has revealed the effects of the SST and SM boundary forcings on the variability and potential predictability of near-surface temperature, precipitation and surface evaporation. While in the tropics SST anomalies clearly maintain a potentially predictable variability throughout the annual cycle, in the mid-latitudes the SST forced variability is only dominant in winter and SM plays a leading role in summer. In a similar fashion, the annual cycle of the hindcast skill (evaluated as the anomalous correlation coefficient of the three ensemble means with respect to the “observations”) indicates that the SST forcing is the dominant contributor over the tropical continents and in the winter mid-latitudes but that SM is supporting a significant part of the skill in the summer mid-latitudes. Focusing on boreal summer, we have then investigated different aspects of the SM and SST contribution to climate variations in terms of spatial distribution and time-evolution. Our experiments suggest that SM is potentially an additional source of climate predictability. A realistic initialization of SM and a proper representation of the land–atmosphere feedbacks seem necessary to improve state-of-the-art dynamical seasonal predictions, but will be actually efficient only in the areas where SM anomalies are themselves predictable at the monthly to seasonal timescale (since remote effects of SM are probably much more limited than SST teleconnections).  相似文献   

8.
The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.  相似文献   

9.
A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model.Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane.When coupled processes are excluded,a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research.The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well,as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks.Asymmetric structures are successfully simulated under conditions of uniform environmental flow.The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions.The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated.TC intensity responds nonlinearly to sea surface temperature (SST).The TC intensification rate becomes smaller once the SST exceeds a certain threshold.Oceanic stratification also influences TC intensity,with stronger stratification responsible for a larger decrease in intensity.The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified,demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification.Air-sea interaction has only a slight influence on TC movement in this model.  相似文献   

10.
 The last 810 years of a control integration with the ECHAM1/LSG coupled model are used to clarify the nature of the ocean-atmosphere interactions at low frequencies in the North Atlantic and the North Pacific. To a first approximation, the atmosphere acts as a white noise forcing and the ocean responds as a passive integrator. The sea surface temperature (SST) variability primarily results from short time scale fluctuations in surface heat exchanges and Ekman currents, and the former also damp the SST anomalies after they are generated. The thermocline variability is primarily driven by Ekman pumping. Because the heat, momentum, and vorticity fluxes at the sea surface are correlated in space and time, the SST variability is directly linked to that in the ocean interior. The SST is also modulated by the wind-driven geostrophic fluctuations, resulting in persistent correlation with the thermocline changes and a slight low-frequency redness of the SST spectra. The main dynamics are similar in the two oceans, although in the North Pacific the SST variability is more strongly influenced by advection changes and the oceanic time scales are larger. A maximum covariance analysis based on singular value decomposition in lead and lag conditions indicates that some of the main modes of atmospheric variability in the two oceans are sustained by a very weak positive feedback between the atmosphere, SST, and the strength of the subtropical and subpolar gyres. In addition, in the North Atlantic the main surface pressure mode has a small quasi-oscillatory component at 6-year period, and advective resonance occurs for SST around 10-year period, both periods being also singled out by multichannel singular spectrum analysis. The ocean-atmosphere coupling is however much too weak to redden the tropospheric spectra or create anything more than tiny spectral peaks, so that the atmospheric and oceanic variability is dominated in both ocean sectors by the one-way interactions. Received: 2 April 1999 / Accepted: 14 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号