首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
琉球弧前盆地位于菲律宾海板块北部与欧亚板块汇聚部位,发育于琉球海沟北部增生楔与琉球岛弧之间,是典型“沟-弧-盆”体系的组成单元。现利用多道地震资料,首次建立琉球弧前盆地的层序地层格架,分析其新生代层序地层特征,阐明弧前盆地沉积充填演化过程,并探讨各盆地主要物源。通过地震剖面解释分析,表明:①始新世为岛弧变质基底沉积期,晚渐新世晚期-早中新世阶段发育残余伸展盆地基底沉积,属于浅海环境,主要受岩浆活动影响,发育火山碎屑岩相;②中中新世-第四纪时期是弧前盆地的主体沉积期,盆地从半深海沉积环境向深海环境过渡,发育典型深海沉积相,局部为火山碎屑岩相;中中新世时北部的南琉球群岛是弧前盆地主要物源区;晚中新世至第四纪时期,台湾岛东北部陆区成为对该弧前盆地贡献最大的物源区,而南琉球群岛的物源供给量降为次要地位。该研究结果是对琉球岛弧及周缘构造控盆作用研究的拓展,并对台湾岛陆地与东部海域“源-汇”系统研究有重要的指导意义。  相似文献   

2.
The East China Sea basins, located in the West Pacific Continental Margin (WPCM) since the late Mesozoic, mainly include the East China Sea Shelf Basin (ECSSB) and the Okinawa Trough (OT). The WPCM and its adjacent seas can be tectonically divided into five units from west to east, including the Min‐Zhe Uplift, ECSSB, the Taiwan–Sinzi Belt, OT, and the Ryukyu Island Arc, which record regional tectonic evolution and geodynamics. Among those tectonic units, the ECSSB and the OT are important composite sedimentary pull‐apart basins, which experienced two stages of strike‐slip pull‐apart processes. In seismic profiles, the ECSSB and the OT show a double‐layer architecture with an upper half‐graben overlapping on a lower graben. In planar view, the ECSSB and the OT are characterized by faulted blocks from south to north in the early Cenozoic and by a zonation from west to east in the late Cenozoic. The faulted blocks with planar zonation and two‐layer vertical architecture entirely jumped eastward from the Min‐Zhe Uplift to the OT during the late Cenozoic. In addition, the whole palaeogeomorphology of the ECSSB changed notably, from pre‐Cenozoic highland or mountain into a Late Eocene continental margin with east‐tilting topography caused by the eastward tectonic jumping. The OT opened to develop into a back‐arc basin until the Miocene. Synthetic surface geological studies in the China mainland reveal that the Mesozoic tectonic setting of the WPCM is an Andean‐type continental margin developing many sinistral strike‐slip faults and pull‐apart basins and the Cenozoic tectonic setting of the WPCM is a Japanese‐type continental margin developing dextral strike‐slip faults and pull‐apart basins. Thus, the WPCM underwent a transition from Andean‐type to Japanese‐type continental margins at about 80 Ma (Late Cretaceous) and a transition in topography from a Mesozoic highland to a Cenozoic lowland, and then to below sea‐level basins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The major and trace element and Pb–Sr–Nd isotopic compositions of Quaternary mafic lavas from the northern Ryukyu arc provide insights into the nature of the mantle wedge and its tectonic evolution. Beneath the volcanic front in the northern part of the arc, the subducted slab of the Philippine Sea Plate bends sharply and steepens at a depth of ∼80 km. Lavas from the volcanic front have high abundances of large ion lithophile elements and light rare earth elements relative to the high field strength elements, consistent with the result of fluid enrichment processes related to dehydration of the subducting slab. New Pb isotopic data identify two distinct asthenospheric domains in the mantle wedge beneath the south Kyushu and northern Ryukyu arc, which, in a parallel with data from the Lau Basin, appear to reflect mantle with affinities to Indian and Pacific-type mid-ocean ridge basalt (MORB). Indian Ocean MORB-type mantle, contaminated with subducted Ryukyu sediments can account for the variation of lavas erupted on south Kyushu, and probably in the middle Okinawa Trough. In contrast, magmas of the northern Ryukyu volcanic front appear to be derived from sources of Pacific MORB-type mantle contaminated with a sedimentary component. Along-arc variation in the northern Ryukyus reflects increasing involvement of a sedimentary component to the south. Compositions of alkalic basalts from the south Kyushu back-arc resemble intraplate-type basalts erupted in NW Kyushu since ∼12 Ma. We propose that the bending of the subducted slab was either caused by or resulted in lateral migration of asthenospheric mantle, yielding Indian Ocean-type characteristics from a mantle upwelling zone beneath NW Kyushu and the East China Sea. This model also accounts for (1) extensional counter-clockwise crustal rotation (∼4–2 Ma), (2) voluminous andesite volcanism (∼2 Ma), and (3) the recent distinctive felsic magmatism in the south Kyushu region. Received: 30 November 1999 / Accepted: 20 July 2000  相似文献   

4.
How was Taiwan created?   总被引:4,自引:0,他引:4  
Since the beginning of formation of proto-Taiwan during late Miocene (9 Ma), the subducting Philippine (PH) Sea plate moved continuously through time in the N307° direction at a 5.6 cm/year velocity with respect to Eurasia (EU), tearing the Eurasian plate. Strain states within the EU crust are different on each side of the western PH Sea plate boundary (extensional in the Okinawa Trough and northeastern Taiwan versus contractional for the rest of Taiwan Island). The B feature corresponds to the boundary between the continental and oceanic parts of the subducting Eurasian plate and lies in the prolongation of the ocean–continent boundary of the northern South China Sea. Strain rates in the Philippines to northern Taiwan accretionary prism are similar on each side of B (contractional), though with different strain directions, perhaps in relation with the change of nature of the EU slab across B. Consequently, in the process of Taiwan mountain building, the deformation style was probably not changing continuously from the Manila to the Ryukyu subduction zones. The Luzon intra-oceanic arc only formed south of B, above the subducting Eurasian oceanic lithosphere. North of B, the Luzon arc collided with EU simultaneously with the eastward subduction of a portion of EU continental lithosphere beneath the Luzon arc. In its northern portion, the lower part of the Luzon arc was subducting beneath Eurasia while the upper part accreted against the Ryukyu forearc. Among the consequences of such a simple geodynamic model: (i) The notion of continuum from subduction to collision might be questioned. (ii) Traces of the Miocene volcanic arc were never found in the southwestern Ryukyu arc. We suggest that the portion of EU continental lithosphere, which has subducted beneath the Coastal Range, might include the Miocene Ryukyu arc volcanoes formed west of 126°E longitude and which are missing today. (iii) The 150-km-wide oceanic domain located south of B between the Luzon arc and the Manila trench, above the subducting oceanic EU plate (South China Sea) was progressively incorporated into the EU plate north of B.  相似文献   

5.
钓鱼岛隆褶带位于东海陆架东部,是分隔东海盆地东部坳陷带和冲绳海槽盆地的构造单元.结合东海周缘地质分析,认识到钓鱼岛隆褶带曾经是东海陆架外缘隆起的一部分.该隆起形成于白垩纪,基底为元古宙变质岩,其上还存有晚古生代—中生代残余地层,中新世分解为钓鱼岛隆褶带和琉球隆起两部分,具有“早成型晚改造”的特点.基于这一认识,认为西湖...  相似文献   

6.
西太平洋边缘构造特征及其演化   总被引:1,自引:1,他引:0       下载免费PDF全文
李学杰  王哲  姚永坚  高红芳  李波 《中国地质》2017,44(6):1102-1114
西太平洋边缘构造带是地球上规模最大最复杂的板块边界,以台湾和马鲁古海为界,自北往南大致可以分为3段。北段是典型的沟-弧-盆体系,千岛海盆、日本海盆及冲绳海槽均为典型的弧后扩张盆地。中段菲律宾岛弧构造带为双向俯冲带,构造复杂,新生代经历大的位移和重组,使得欧亚大陆边缘的南海、苏禄海和苏拉威西海成因存在很大的争议。南段新几内亚—所罗门构造带是太平洋板块、印度—澳大利亚及欧亚板块共同作用的结果,既有不同阶段的俯冲、碰撞,也有大规模的走滑与弧后的扩张,其间既有新扩张的海盆,又有正在俯冲消亡的海盆。台湾岛处于枢纽部位,欧亚板块在此被撕裂,南部欧亚大陆边缘南海洋壳沿马尼拉海沟俯冲于菲律宾岛弧之下,而北部菲律宾海洋壳沿琉球海沟俯冲欧亚大陆之下。马鲁古海是西太平洋板块边界又一转折点,马鲁古海板块往东下插于哈马黑拉之下,往西下插于桑义赫弧,形成反U形双向俯冲汇聚带,其洋壳板块已基本全部消失,致使哈马黑拉弧与桑义赫弧形成弧-弧碰撞。  相似文献   

7.
《Geodinamica Acta》2001,14(1-3):45-55
Field studies on the Neogene successions in south of İzmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the Early–Middle Miocene period. The lacustrine sediments underwent an approximately N–S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N–S-trending, fault-bounded graben basin, the Çubukludağ graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukludağ graben began to work as a cross graben between the E–W grabens, since that period.  相似文献   

8.
The northeastern extremity of the East-Asian Rift Belt is designated as the Priokhotsky Rift, comprising the broadly north–south Torom (750 × 100 km) and Nizhneamursky (450 × 100 km) open faults formed by a system of northeast striking grabens associated with the closure of the Tan-Lu shear system and north–south striking grabens formed in a setting of oblique extension. Infilling of the grabens corresponding to the rift stage proper is the Eocene?Miocene coal-bearing molasse; the fields of the Miocene basalts are also related to it. The grabens of the rift belt are overlain by the Pliocene–Neopleistocene associations of rift basins in the forming plate cover of the Alpine platform.  相似文献   

9.
The Okinawa Trough is a young, intracontinental backarc basin that has formed behind the Ryukyu arc–trench system since late Miocene time. In the Southernmost Part of the Okinawa Trough (SPOT), a cluster of active submarine volcanoes delineates a volcanic belt, which is located only ∼100 km above the Wadati–Benioff zone. We report herein new major and trace element data for the SPOT volcanic rocks. These rocks show a compositional range from medium-K andesite to rhyolite. Their geochemical characteristics are similar to those of pre-backarc rifting volcanic rocks from the central Ryukyu arc, and different from those of backarc basin lavas from the Middle Okinawa Trough and the post-backarc rifting Ryukyu arc volcanics. Therefore, despite being topographically contiguous with the rest of the Trough, the SPOT that developed in the Quaternary is not a simple backarc basin but instead an embryonic rift zone in which early arc volcanism occurs as a result of the Ryukyu subduction.  相似文献   

10.
中国中始新世—早更新世构造事件与应力场   总被引:5,自引:0,他引:5  
中始新世—渐新世(52—23.3Ma)的华北构造期是以太平洋板块朝NWW方向位移为主要特征,使我国大陆受到近东西向的挤压,造成一系列近南北向的褶皱、逆掩断层和许多走向近东西的正断层、单断箕状盆地。此构造事件的发生可能与始新世末期北美、加勒比海和东太平洋的大量微玻璃陨石的坠落、冲击有关。中新世--早更新世(23.30.7Ma)的喜马拉雅构造期是以印度—澳大利亚板块与菲律宾海板块向北推移为主要特征,造成喜马拉雅山和日本列岛南部的俯冲带,使我国西部发育走向近东西的褶皱、逆掩断层系,而在东部地区则形成许多走向近南北的深切地幔的正断层系.并使南海与日本海再次张开。出现洋壳。喜马拉雅构造事件可能与印度洋、南亚、澳大利亚附近地区的微玻璃陨石群的冲击有关。  相似文献   

11.
在前人研究成果的基础上,划分出青藏高原及邻区上新世残留盆地共95个,探讨了青藏高原及邻区上新世构造岩相古地理演化。青藏高原上新世总体构造地貌格局主要受控于印度板块与欧亚板块沿雅鲁藏布江缝合带的碰撞及持续挤压,影响着青藏高原广大范围内的构造抬升。东北部昆仑山、祁连山地区是两大构造隆起蚀源区,两大山系夹持的柴达木盆地是高原东北部最大的陆内盆地,祁连山以北和以东地区则以盆山相间的格局接受周围山系的剥蚀物质,直到晚上新世(青藏运动"A"幕)高原东北部进一步强烈隆升,山间盆地抬升成为剥蚀区。新疆塔里木和青藏高原东部羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积区。高原东南部为一系列走滑拉分断裂运动形成的拉分盆地,上新世早期堆积洪冲积相砾岩,中期为湖泊、三角洲沉积,晚期随着山体的进一步抬升,盆地又接受冲洪积扇相砾岩堆积,并被河流侵蚀剥露。高原南部上新世多分布一些近南北向盆地,是响应高原隆升到一定程度垮塌而成的断陷盆地,同东南部拉分盆地类似,上新世沉积相也由早至晚分为3个阶段。恒河地区上新世由于喜马拉雅山的快速抬升,沉积以粗碎屑为主,形成狭长的西瓦利克群堆积。上新世青藏高原总体地势继承了中新世西高东低、南高北低的地貌特征,但地势高差明显较中新世增大。  相似文献   

12.
13.
《Sedimentary Geology》2005,173(1-4):277-314
We summarise facies evidence for four Miocene Basins (Lycian, Aksu, Köprü and Manavgat) within the Isparta Angle. Facies patterns are plotted on six palaegeographic maps restored to their pre-late Miocene setting. These maps are used to help infer the various controls on deposition. Facies trends and structural features suggest that the individual basins were kinematically linked within the overall African–Eurasia convergence zone. The Miocene Basins represent a classic example of how related basins may develop within an evolving orogen subject to variable controls through time. The dominant control was tectonic although autocyclic sedimentary processes (e.g., reef growth), and both relative and eustatic sea-level change played a significant role.From the palaeogeographic reconstructions and the tectonic context of the Isparta Angle, we infer that during the early Miocene, the westerly Lycian basin and the neighbouring Aksu basin experienced flexural subsidence related to southeastward thrusting of the Lycian Nappes. More distal effects of the forebulge may have caused uplift around the Aksu and Köprü basins initiating N–S half-grabens bounded by master faults on the eastern side of each basin. Later, the eastern basins of the Isparta Angle were influenced by regional northward subduction and inferred slab retreat within a remnant of the Southern Neotethys located within the Mediterranean Sea at the intersection of the south Aegean and Cyprus arcs.  相似文献   

14.
Andean orogenic processes controlled the spatial and temporal distribution of the magmatic and sedimentary record. This contribution integrates new U/Pb zircon ages, heavy mineral analyses and biostratigraphic constraints from the Neogene sedimentary record of the fore‐arc and intra‐arc basins and volcano‐plutonic rocks of southwestern Colombia, to reconstruct these orogenic processes. The results reveal continuous arc magmatism since the Late Oligocene, with a major post‐Middle Miocene magmatic peak and exhumation. When integrated with other geological constraints, the tectonic evolution of the margin includes Eocene‐Oligocene oblique convergence with limited magmatic activity, followed by the initiation of a Late Oligocene‐Early Miocene arc that migrated to the east in the Middle Miocene, when it experienced a major increase in magmatic activity, crustal deformation, exhumation and thickening. This orogenic evolution is related to the shallowing of the slab dip due to the subduction of the Neogene Nazca Plate.  相似文献   

15.
David Nowell 《Geology Today》2019,35(5):186-195
Since my 2012 feature about British Antarctic Survey (BAS) geological maps, the survey has continued to produce a series of ad hoc maps highlighting the results of their ongoing research, often in collaboration with their international colleagues. Not only has BAS added to their geological mapping series with James Ross Island off the Antarctic Peninsula, they have also produced a map of the bedrock topography of the entire continent, together with two bathymetric and geological settings sheets of the seas to the north of Antarctica. The first oceanographic map focuses on the South Sandwich Islands, some of the most remote United Kingdom overseas territories, roughly 700 km south‐east of South Georgia. Finally, the Drake Passage sheet shows the sea bed morphology from the Falklands and Tierra del Fuego to the South Shetland Islands just off the Antarctic Peninsula, spanning 70–50°W in longitude and 52–63°S in latitude. Below 60° south, all international territorial claims have been frozen by the Antarctic Treaty, which has demilitarized the entire continent since 1961 and ensured it remains untainted by mineral exploration and which has now expanded to a membership of over 50 nations.  相似文献   

16.
Differential earth movements occurred during Eocene, Miocene, and late Caino‐zoic times. The faulting formed basins of sedimentation, led to dissection of land‐surfaces in some localities and burial in others, and faulted the Cainozoic sediments.

Laterite and silcrete cap remnants of relict landsurfaces of two different ages. Laterite formed before the Eocene; it was faulted and dissected during the Eocene in the north but continued to develop until the Miocene in the south. Silcrete formed from Eocene to Miocene times; its dissection was promoted by late Cainozoic tectonism.

Since laterite and silcrete formed on the same strata in warm, very moist environments, lithology and climate are not important genetic factors causing laterite to form at one time and silcrete at another. Only base levels of erosion differed. The silcrete surface was largely developed by streams flowing into mid‐Cainozoic lacustrine basins, whereas there is no evidence that these drainage conditions prevailed for laterite formation.  相似文献   

17.
《Geodinamica Acta》1998,11(5):233-247
In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.  相似文献   

18.
Abstract

Field studies on the Neogene successions in south of ?zmir reveal that subsequent Neogene continental basins were developed in the region. Initially a vast lake basin was formed during the early-Middle Miocene period. The lacustrine sediments underwent an approximately N-S shortening deformation to the end of Middle Miocene. A small portion of the basin fill was later trapped within the N-S-trending, fault-bounded graben basin, the Çubukluda? graben, opened during the Late Miocene. Oblique-slip normal faults with minor sinistral displacement are formed possibly under N–S extensional regime, and controlled the sediment deposition. Following this the region suffered a phase of denudation which produced a regionwide erosional surface suggesting that the extension interrupted to the end of Late Miocene–Early Pliocene period. After this event the E–W-trending major grabens and horsts of western Anatolia began to form. The graben bounding faults cut across the Upper Miocene–Pliocene lacustrine sediments and fragmented the erosional surface. The Çubukluda? graben began to work as a cross garden between the E–W grabens, since that period. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   

19.
Eastern Venezuela is divided into three geologic-geographic provinces: The Guayana shield in the south; the Eastern Venezuelan basin in the central part; and the mountains of the Serranía del Interior and Cordillera de la Costa (Caribbean Cordillera) in the northern part. The stratigraphy and geological history are discussed, as reflected by rocks of presumably pre-Cambrian, ? Triassic-Jurassic, Cretaceous, Tertiary and Quaternary ages. From the Cretaceous onward, Eastern Venezuela north of the Guayana shield and east of the El BaÚl swell, forms part of a geosyncline, the axis of which shifted southward during its history. The position of this axis governed deposition and character of the sediments, which become more marine from south to north and from west to east. Orogenic and epeirogenic movements, particularly during Miocene and Pliocene time, transformed the Eastern Venezuelan sedimentary basin into two structural basins, namely the Maturín basin on the east and the Guárico basin on the west.  相似文献   

20.
Abstract

In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics.

Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation. © Elsevier, Paris  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号