首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— Sample preparation is always a critical step in the study of micrometer‐sized astromaterials available for study in the laboratory, whether their subsequent analysis is by electron microscopy or secondary ion mass spectrometry. A focused beam of gallium ions has been used to prepare electron transparent sections from an interplanetary dust particle (IDP), as part of an integrated analysis protocol to maximize the mineralogical, elemental, isotopic, and spectroscopic information extracted from one individual particle. In addition, focused ion beam (FIB) techniques have been employed to extract cometary residue preserved on the rims and walls of microcraters in 1100 series aluminum foils that were wrapped around the sample tray assembly on the Stardust cometary sample collector. Non‐ideal surface geometries and inconveniently located regions of interest required creative solutions. These include support pillar construction and relocation of a significant portion of sample to access a region of interest. Serial sectioning, in a manner similar to ultramicrotomy, is a significant development and further demonstrates the unique capabilities of focused ion beam microscopy for sample preparation of astromaterials.  相似文献   

2.
Abstract— Various microscopic techniques were used to characterize experimental microcraters in aluminum foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminum foils to be returned by the Stardust mission. First, scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDS) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda‐lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using transmission electron microscopy (TEM), EDS, and electron diffraction methods. The TEM samples were prepared by focused ion beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that infrared microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.  相似文献   

3.
Aluminum foils from the Stardust cometary dust collector contain impact craters formed during the spacecraft's encounter with comet 81P/Wild 2 and retain residues that are among the few unambiguously cometary samples available for laboratory study. Our study investigates four micron‐scale (1.8–5.2 μm) and six submicron (220–380 nm) diameter craters to better characterize the fine (<1 μm) component of comet Wild 2. We perform initial crater identification with scanning electron microscopy, prepare the samples for further analysis with a focused ion beam, and analyze the cross sections of the impact craters with transmission electron microscopy (TEM). All of the craters are dominated by combinations of silicate and iron sulfide residues. Two micron‐scale craters had subregions that are consistent with spinel and taenite impactors, indicating that the micron‐scale craters have a refractory component. Four submicron craters contained amorphous residue layers composed of silicate and sulfide impactors. The lack of refractory materials in the submicron craters suggests that refractory material abundances may differentiate Wild 2 dust on the scale of several hundred nanometers from larger particles on the scale of a micron. The submicron craters are enriched in moderately volatile elements (S, Zn) when normalized to Si and CI chondrite abundances, suggesting that, if these craters are representative of the Wild 2 fine component, the Wild 2 fines were not formed by high‐temperature condensation. This distinguishes the comet's fine component from the large terminal particles in Stardust aerogel tracks which mostly formed in high‐temperature events.  相似文献   

4.
Abstract— Metallic aluminum alloy foils exposed on the forward, comet‐facing surface of the aerogel tray on the Stardust spacecraft are likely to have been impacted by the same cometary particle population as the dedicated impact sensors and the aerogel collector. The ability of soft aluminum alloy to record hypervelocity impacts as bowl‐shaped craters offers an opportunistic substrate for recognition of impacts by particles of a potentially wide size range. In contrast to impact surveys conducted on samples from low Earth orbit, the simple encounter geometry for Stardust and Wild‐2, with a known and constant spacecraft‐particle relative velocity and effective surface‐perpendicular impact trajectories, permits closely comparable simulation in laboratory experiments. For a detailed calibration program, we have selected a suite of spherical glass projectiles of uniform density and hardness characteristics, with well‐documented particle size range from 10 μm to nearly 100 μm. Light gas gun buckshot firings of these particles at approximately 6 km s?1 onto samples of the same foil as employed on Stardust have yielded large numbers of craters. Scanning electron microscopy of both projectiles and impact features has allowed construction of a calibration plot, showing a linear relationship between impacting particle size and impact crater diameter. The close match between our experimental conditions and the Stardust mission encounter parameters should provide another opportunity to measure particle size distributions and fluxes close to the nucleus of Wild‐2, independent of the active impact detector instruments aboard the Stardust spacecraft.  相似文献   

5.
We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s?1 with a light‐gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less‐refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI‐like minerals.  相似文献   

6.
Abstract– Samples returned by the Stardust mission from comet 81P/Wild 2 provide an unequaled opportunity to investigate cometary formation and evolution. Crystalline silicates have been identified in impact craters in Stardust Al foil, yet their origin is ambiguous. They may be original cometary components, or they may have grown from melt generated by impact. We have now studied experimental impacts of the calcium silicate mineral wollastonite, using scanning and transmission electron microscopy to document the relationship between impact feature shape and crystal lattice orientation in impact residue. Wollastonite can have a characteristic acicular habit, forming crater shapes that indicate crystal orientation upon impact. From extracted impact residue, we determined the lattice orientation of crystalline material for comparison with the whole particle orientation. We assume that crystallization from melt, without surviving seed nuclei, should result in randomly oriented crystallite growth, with no preferred direction for individual crystals. However, we find that the majority of crystalline material in the residue retains b‐axis orientation parallel to the long axis of the crater form. This, together with impact parameter calculations and lack of Al incorporation by the residue (suggesting melting did not occur), indicates that these crystals and, by analogy, the majority of Al‐free crystalline silicates in Stardust foil, are surviving remnants of the impactor. Furthermore, amorphous wollastonite residue probably did not form via melting and subsequent quenching, but instead by high‐pressure amorphization or degradation of unquenchable phases. Finally, one crystal studied appears to be a new high‐pressure/temperature polymorph of CaSiO3, indicating that such polymorphs may be observed in Stardust residues in craters.  相似文献   

7.
Abstract– The Al foils lining the aerogel tiles of the Stardust interstellar tray represent approximately 13% of the total collecting area, about 15,300 mm2. Although the flux is poorly constrained, fewer than 100 impacts are expected in all the Al foils on the collector, and most of these are likely to be less than 1 μm in diameter. Secondary electron (SE) images of the foils at a resolution of approximately 50 nm per pixel are being collected during the Stardust Interstellar Preliminary Examination, resulting in more than two million images that will eventually need to be searched for impact craters. The unknown and complicated nature of 3‐dimensional interstellar tracks in aerogel necessitated the use of a massively distributed human search to locate only a few interstellar tracks. The 2‐dimensional nature of the SE images makes the problem of searching for craters tractable for algorithmic approaches. Using templates of craters from cometary impacts into Stardust foils, we present a computer algorithm for the identification of impact craters in the Stardust interstellar foils using normalized cross‐correlation and template matching. We address the speed, sensitivity, and false‐positive rate of the algorithm. The search algorithm can be adapted for use in other applications. The program is freely available for download at http://jake.ssl.berkeley.edu:8000/groups/westphalgroup/wiki/14e52/ISPE_SEM_Crater_Search.html .  相似文献   

8.
Abstract— The known encounter velocity (6.1 kms?1) and particle incidence angle (perpendicular) between the Stardust spacecraft and the dust emanating from the nucleus of comet Wild‐2 fall within a range that allows simulation in laboratory light‐gas gun (LGG) experiments designed to validate analytical methods for the interpretation of dust impacts on the aluminum foil components of the Stardust collector. Buckshot of a wide size, shape, and density range of mineral, glass, polymer, and metal grains, have been fired to impact perpendicularly on samples of Stardust Al 1100 foil, tightly wrapped onto aluminum alloy plate as an analogue of foil on the spacecraft collector. We have not yet been able to produce laboratory impacts by projectiles with weak and porous aggregate structure, as may occur in some cometary dust grains. In this report we present information on crater gross morphology and its dependence on particle size and density, the pre‐existing major‐ and trace‐element composition of the foil, geometrical issues for energy dispersive X‐ray analysis of the impact residues in scanning electron microscopes, and the modification of dust chemical composition during creation of impact craters as revealed by analytical transmission electron microscopy. Together, these observations help to underpin the interpretation of size, density, and composition for particles impacted on the Stardust aluminum foils.  相似文献   

9.
Over the last decade, silica aerogel tracks and aluminum foil craters on the Stardust collector have been studied extensively to determine the nature of captured cometary dust grains. Analysis of particles captured in aerogel has been developed to a fine art, aided by sophisticated preparation techniques, and yielding revolutionary knowledge of comet dust mineralogy. The Stardust foil craters can be interpreted in terms of impacting particle size and structure, but almost all studies of composition for their contents have relied on in situ analysis techniques or relatively destructive extraction of materials. This has limited their examination and interpretation. However, numerous experimental hypervelocity impact studies under Stardust-Wild 2 encounter conditions have shown that abundant dust components are preserved in foil craters of all sizes. Using some of these analogue materials, we have previously shown that modern, nondestructive scanning electron microscope imaging and X-ray microanalysis techniques can document distribution of dust remnants both quickly and thoroughly within foil craters prior to any preparation. Here we present findings from our efforts to quantify the amount of residue and demonstrate a simple method of crater shape modification which can bring material into positions where it is much more accessible for in situ analysis, or safe removal of small subsamples. We report that approximately 50% of silicate-dominated impactors were retained as impact crater residue; however, <3% of organic impactors remained in the craters after impact.  相似文献   

10.
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s?1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.  相似文献   

11.
Abstract– The fluence of dust particles <10 μm in diameter was recorded by impacts on aluminum foil of the NASA Stardust spacecraft during a close flyby of comet 81P/Wild 2 in 2004. Initial interpretation of craters for impactor particle dimensions and mass was based upon laboratory experimental simulations using projectiles less than >10 μm in diameter and the resulting linear relationship of projectile to crater diameter was extrapolated to smaller sizes. We now describe a new experimental calibration program firing very small monodisperse silica projectiles (470 nm–10 μm) at approximately 6 km s?1. The results show an unexpected departure from linear relationship between 1 and 10 μm. We collated crater measurement data and, where applicable, impactor residue data for 596 craters gathered during the postmission preliminary examination phase. Using the new calibration, we recalculate the size of the particle responsible for each crater and hence reinterpret the cometary dust size distribution. We find a greater flux of small particles than previously reported. From crater morphology and residue composition of a subset of craters, the internal structure and dimensions of the fine dust particles are inferred and a “maximum‐size” distribution for the subgrains composing aggregate particles is obtained. The size distribution of the small particles derived directly from the measured craters peaks at approximately 175 nm, but if this is corrected to allow for aggregate grains, the peak in subgrain sizes is at <100 nm.  相似文献   

12.
Abstract— In 2006, the Stardust spacecraft will return to Earth with cometary and perhaps interstellar dust particles embedded in silica aerogel collectors for analysis in terrestrial laboratories. These particles will be the first sample return from a solid planetary body since the Apollo missions. In preparation for the return, analogue particles were implanted into a keystone of silica aerogel that had been extracted from bulk silica aerogel using the optical technique described in Westphal et al. (2004). These particles were subsequently analyzed using analytical techniques associated with the use of a nuclear microprobe. The particles have been analyzed using: a) scanning transmission ion microscopy (STIM) that enables quantitative density imaging; b) proton elastic scattering analysis (PESA) and proton backscattering (PBS) for the detection of light elements including hydrogen; and c) proton‐induced X‐ray emission (PIXE) for elements with Z > 11. These analytical techniques have enabled us to quantify the composition of the encapsulated particles. A significant observation from the study is the variable column density of the silica aerogel. We also observed organic contamination within the silica aerogel. The implanted particles were then subjected to focused ion beam (FIB) milling using a 30 keV gallium ion beam to ablate silica aerogel in site‐specific areas to expose embedded particles. An ion polished flat surface of one of the particles was also prepared using the FIB. Here, we show that ion beam techniques have great potential in assisting with the analysis and exposure of Stardust particles.  相似文献   

13.
Abstract– Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s?1, it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al‐free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy.  相似文献   

14.
Abstract– We have shown in laboratory experiment that hypervelocity impacts on a solar cell produce ejecta that can be captured on aluminum (Al 1100) foil or in low density (33 kg m?3) aerogel. The origin of the secondary impacts can be determined by either analysis of the residue in the craters in the foils (which preserve an elemental signature of the solar cell components) or by their pointing direction for tracks in the aerogel (which we show align with the impact direction to ± 0.4°). This experimental evidence explains the observations of the NASA Stardust mission which has reported that the majority of tracks in the aerogel collector used to collect interstellar dust actually point at the spacecraft’s solar panels. From our results, we suggest that it should also be possible to recognize secondary ejecta craters in the Stardust mission aluminum foils, also used as dust sampling devices during the mission.  相似文献   

15.
Abstract— The NASA Stardust mission brought to Earth micron‐size particles from the coma of comet 81P/Wild 2 using aerogel, a porous silica material, as the capture medium. A major challenge in understanding the organic inventory of the returned comet dust is identifying, unambiguously, which organic molecules are indigenous to the cometary particles, which are produced from carbon contamination in the Stardust aerogel, and which are cometary organics that have been modified by heating during the particle capture process. Here it is shown that 1) alteration of cometary organic molecules along impact tracks in aerogel is highly dependent on the original particle morphology, and 2) organic molecules on test‐shot terminal particles are mostly preserved. These conclusions are based on two‐step laser mass spectrometry (L2MS) examinations of test shots with organic‐laden particles (both tracks in aerogel and the terminal particles themselves).  相似文献   

16.
Abstract– Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X‐ray absorption near‐edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen‐rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl‐containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule‐like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector.  相似文献   

17.
Abstract– We present NanoSIMS four‐isotope S analyses of 24 comet Wild 2 dust impact residues in craters on aluminum foil C2037N returned by NASA’s Stardust mission. Except for one sample, all impact residues have normal S isotopic compositions within 2σ uncertainties of at least two S isotope ratios. This implies that most S‐rich Wild 2 dust impactors formed in the solar system. Instrumental isotope fractionation due to sample topography is the main contribution to our analytical uncertainty. One impact crater residue shows small anomalies of δ33S = ?57 ± 17‰, and δ34S = ?41 ± 17‰ (1σ uncertainties). Although this could be simply a statistical outlier or the fingerprint of a chemical isotope fractionation it is also possible that the observed anomaly results from the mixture of a cometary FeS particle with a small (150 nm diam.) presolar FeS supernova grain. This would translate into a presolar sulfide abundance of approximately 200 ppm.  相似文献   

18.
Abstract– The grains returned by NASA’s Stardust mission from comet 81P/Wild 2 represent a valuable sample set that is significantly advancing our understanding of small solar system bodies. However, the grains were captured via impact at ~6.1 km s?1 and have experienced pressures and temperatures that caused alteration. To ensure correct interpretations of comet 81P/Wild 2 mineralogy, and therefore preaccretional or parent body processes, an understanding of the effects of capture is required. Using a two‐stage light‐gas gun, we recreated Stardust encounter conditions and generated a series of impact analogs for a range of minerals of cometary relevance into flight spare Al foils. Through analyses of both preimpact projectiles and postimpact analogs by transmission electron microscopy, we explore the impact processes occurring during capture and distinguish between those materials inherent to the impactor and those that are the product of capture. We review existing and present additional data on olivine, diopside, pyrrhotite, and pentlandite. We find that surviving crystalline material is observed in most single grain impactor residues. However, none is found in that of a relatively monodisperse aggregate. A variety of impact‐generated components are observed in all samples. Al incorporation into melt‐derived phases allows differentiation between melt and shock‐induced phases. In single grain impactor residues, impact‐generated phases largely retain original (nonvolatile) major element ratios. We conclude that both surviving and impact‐generated phases in residues of single grain impactors provide valuable information regarding the mineralogy of the impacting grain whilst further studies are required to fully understand aggregate impacts and the role of subgrain interactions during impact.  相似文献   

19.
Abstract— We have explored the feasibility of C, N, and O isotopic measurements by NanoSIMS and of elemental abundance determinations by time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) on residues of Allende projectiles that impacted Stardust‐type aluminum foils in the laboratory at 6 km/sec. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with microcraters that were produced during the encounter of the Stardust space probe with comet 81P/Wild‐2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF‐SIMS. Crater sizes were between 3 and 190 μm. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C and O isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, which is the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of solar system origin. TOF‐SIMS studies are restricted to materials from the crater rim. The element ratios of the major rock‐forming elements in the Allende projectiles are well‐characterized by the TOF‐SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits chemical information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial. This information could not be obtained in the present study due to unavoidable contamination during impact experiments.  相似文献   

20.
Aerogel collectors have been deployed in low-Earth orbit to collect orbital debris and micrometeorites. An array of silica aerogel collectors is currently en-route back to Earth following an encounter with the Comet Wild-2 on board the Stardust spacecraft. Stardust is returning, for laboratory analysis, cometary and interstellar dust grains which impacted into the aerogel collectors at hypervelocities. While the morphology of impact craters in aerogels has been studied empirically, a theoretical understanding of the physical mechanisms responsible for the formation of impact craters in these solids is lacking. Here we propose and test a model of compaction driven impact cratering in aerogels. Our model derives impact crater dimensions directly from energy and momentum deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号