共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The Omolon meteorite fell on 1981 May 15 at 17:10 U.T. to a point with the coordinates φ = 64°01′08″ N, λ = 161°48′30″ E. This is the fifth pallasite that was observed at the moment of its fall and the largest of the pallasites known worldwide (250 kg). The history of the observation, search, and finding of the meteorite is briefly described. From the size of the meteorite and the funnel that it produced, the velocity of its encounter with the ground is estimated by aerodynamic formulas to be 220 m/s. An attempt at estimating the meteorite's initial velocity and mass from its terminal values (which yielded the mass range of 390–490 kg that corresponds to the velocity range of 12–15 km/s) was successful for the mass but unsuccessful for the velocity and the incidence angle, because the problem was ill posed. The position of the radiant is determined from the available observations to be α = 176.4°, δ = +24.1° (Leo). The radiant was situated at an elongation of 29° from the antapex, which means that this was an overtaking meteorite and its entry velocity did not exceed 16 km/s. Three variants of the calculation of the orbital elements—for an entry velocity of 12, 14, and 16 km/s—are presented. In all the three cases, the meteoroid's orbit is close to the orbits of Apollo asteroids and to the orbits of iron meteoroids observed as fireballs with bright iron lines in their spectra. The Omolon meteorite was probably a fragment of an Apollo M-type asteroid. This study is the first attempt at calculating the orbit of a pallasite. 相似文献
2.
Abstract— The Morávka (Czech Republic) meteorite fall occurred on May 6, 2000, 11:52 UT, during the daytime. Six H5–6 ordinary chondrites with a total mass of 1.4 kg were recovered. The corresponding fireball was witnessed by thousands of people and also videotaped by 3 casual witnesses. Sonic booms were recorded by 16 seismic stations in the Czech Republic and Poland and by one infrasonic station in Germany. A total of 2.5% of the fireball eyewitnesses reported electrophonic sounds. Satellites in Earth orbit detected part of the fireball light curve. In this first paper from a series of 4 papers devoted to the Morávka meteorite fall, we describe the circumstances of the fall and determine the fireball trajectory and orbit from calibrated video records. Morávka becomes one of only 6 meteorites with a known orbit. The slope of the trajectory was 20.4° to the horizontal, the initial velocity was 22.5 km/s, and the terminal height of the fireball was 21 km. The semimajor axis of the orbit was 1.85 AU, the perihelion distance was 0.982 AU, and the inclination was 32.2°. The fireball reached an absolute visual magnitude of ?20 at a height of 33 km. 相似文献
3.
Josep M. TRIGO‐RODRÍGUEZ Jií BOROVIKA Pavel SPURNÝ Jos L. ORTIZ Jos A. DOCOBO Alberto J. CASTRO‐TIRADO Jordi LLORCA 《Meteoritics & planetary science》2006,41(4):505-517
Abstract— The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16: 46: 45 ± 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 ± 0.4 km/s. The slope of the trajectory was 29.0 ± 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 ± 0.4 km was 14.2 ± 0.2 km/s, and the fireball terminal height was 22.2 ± 0.2 km. The heliocentric orbit of the meteoroid resided in the ecliptic plane (i = 0.0 ± 0.2°), having a perihelion distance of 0.860 ± 0.007 AU and a semimajor axis of 2.3 ± 0.2 AU. Therefore, the meteorite progenitor body came from the Main Belt, like all previous determined meteorite orbits. The Villalbeto de la Peña fireball analysis has provided the ninth known orbit of a meteorite in the solar system. 相似文献
4.
H. G. M. HILL L. B. D'HENDECOURT C. PERRON A. P. JONES 《Meteoritics & planetary science》1997,32(5):713-718
Abstract— We present results from an ongoing study of the infrared (IR) and optical properties of nanodiamonds, an objective of which is to identify spectral features in the laboratory that could also be used telescopically to trace the presence of these particles in the interstellar medium (ISM). Fourier transform mid-and far-infrared spectra of nanodiamond residue extracted from the Orgueil (CI) chondrite were acquired. All of the mid-IR bands initially present were found to diminish, with the exception of a band at ~1100 cm?1, following additional oxidation of the diamonds. The ~1100 cm?1 band can be predominantly attributed to adsorbed species, especially an ether-type linkage, while the “oxidisable” features seem to be associated with less stable, surface-bonded species and residual carbonaceous material. We obtained three far-IR features but are uncertain about the origin of those at 475 and 188 cm?1. We did not obtain a feature at ~120 cm?1 reported by another group but do not discount the possibility that the band at 188 cm?1 could be related to it. The weak absorption band at 475 cm?1 (21 μm) is especially interesting because it may be strong in emission from hot nanodiamonds and, therefore, related to the unidentified infrared feature (UIF) observed at this wavelength in the spectra of some C-rich protoplanetary nebulae. 相似文献
5.
P. G. Brown D. Vida D. E. Moser M. Granvik W. J. Koshak D. Chu J. Steckloff A. Licata S. Hariri J. Mason M. Mazur W. Cooke Z. Krzeminski 《Meteoritics & planetary science》2019,54(9):2027-2045
The Hamburg (H4) meteorite fell on 17 January 2018 at 01:08 UT approximately 10 km north of Ann Arbor, Michigan. More than two dozen fragments totaling under 1 kg were recovered, primarily from frozen lake surfaces. The fireball initial velocity was 15.83 ± 0.05 km s?1, based on four independent records showing the fireball above 50 km altitude. The radiant had a zenith angle of 66.14 ± 0.29° and an azimuth of 121.56 ± 1.2°. The resulting low inclination (<1°) Apollo‐type orbit has a large aphelion distance and Tisserand value relative to Jupiter (Tj) of ~3. Two major flares dominate the energy deposition profile, centered at 24.1 and 21.7 km altitude, respectively, under dynamic pressures of 5–7 MPa. The Geostationary Lightning Mapper on the Geostationary Operational Environmental Satellite‐16 also detected the two main flares and their relative timing and peak flux agree with the video‐derived brightness profile. Our preferred total energy for the Hamburg fireball is 2–7 T TNT (8.4–28 × 109 J), which corresponds to a likely initial mass in the range of 60–225 kg or diameter between 0.3 and 0.5 m. Based on the model of Granvik et al. (2018), the meteorite originated in an escape route from the mid to outer asteroid belt. Hamburg is the 14th known H chondrite with an instrumentally derived preatmospheric orbit, half of which have small (<5°) inclinations making connection with (6) Hebe problematic. A definitive parent body consistent with all 14 known H chondrite orbits remains elusive. 相似文献
6.
P. BROWN D. PACK W. N. EDWARDS D. O. REVELLE B. B. YOO R. E. SPALDING E. TAGLIAFERRI 《Meteoritics & planetary science》2004,39(11):1781-1796
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds. 相似文献
7.
Pavel SPURNÝ Philip A. BLAND Lukáš SHRBENÝ Jiří BOROVIČKA Zdeněk CEPLECHA Andrew SINGELTON Alex W. R. BEVAN David VAUGHAN Martin C. TOWNER Terence P. McCLAFFERTY Ralf TOUMI Geoff DEACON 《Meteoritics & planetary science》2012,47(2):163-185
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball. 相似文献
8.
Observations of the trail caused by the meteorite which fell around Dhajala, Gujarat (India), on 28 January 1976 have been used to compute the probable orbit of the meteoroid in space. The cosmic ray effects in the meteorite fragments indicate high mass ablation (?90%), suggesting a high velocity (?20 km/sec) of entry into the Earth's atmosphere. The atmospheric trajectory is reasonably well documented and its deviation from the projected ground fallout can be understood in terms of the ambient wind pattern. The apparent radiant of the trail was at a point in the sky with right ascension 165°, declination +60°. Considering the errors in estimating the radiant, we get a range of orbits with a = 2.3 ± 0.8 AU, e = 0.6 ± 0.1, and i = 28 ± 4° with the constraints of a ? 1.5 AU and V∞ < 25 km/sec (which causes nearly complete evaporation of the meteoroid). Taking V∞ = 21.5 lm/sec as indicated by the measured mass ablation of the meteorite, the orbital elements are deduced to be . 相似文献
9.
Jiří Borovička Juraj Tóth Antal Igaz Pavel Spurný Pavel Kalenda Jakub Haloda Ján Svoreň Leonard Kornoš Elizabeth Silber Peter Brown Marek Husárik 《Meteoritics & planetary science》2013,48(10):1757-1779
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter. 相似文献
10.
Abstract— Insoluble organic matter (IOM) dominates the HF/HCl residue of the Orgueil (CI) carbonaceous chondrite meteorite. The IOM is composed primarily of two C‐rich particle types. The first has a fluffy texture similar to crumpled tissue paper, and the second type occurs as solid or hollow nanospheres. High‐resolution transmission electron microscope (HRTEM) images of the fluffy material show it is poorly ordered, with small, irregularly shaped regions having fringes with 0.34–0.38 nm spacings and locally 0.21 nm cross‐fringes. Nanodiamonds occur in the fluffy material. The rounded C‐rich particles are common in the residue and their HRTEM images show neither fringes nor nanodiamonds. Both types of carbonaceous materials have a high aromatic component, as revealed by electron energy‐loss spectroscopy (EELS), with up to 10 at% substitution by S, N, and O. The average compositions of the fluffy material and nanospheres are C100S1.9N3.7O4.9 and C100S2.4N5.0O3.9, respectively. The structural and chemical heterogeneity of the carbonaceous materials may represent material from multiple sources. 相似文献
11.
The goal of this paper is to summarize 150 yr of history of a very special meteorite. The Orgueil meteorite fell near Montauban in southwestern France on May 14, 1864. The bolide, which was the size of the full Moon, was seen across Western France, and almost immediately made the news in local and Parisian newspapers. Within a few weeks of the fall, a great diversity of analyses were performed under the authority of Gabriel Auguste Daubrée, geology professor at the Paris Museum, and published in the Comptes Rendus de l'Académie des Sciences. The skilled scientists reported the presence of iron sulfides, hydrated silicates, and carbonates in Orgueil. They also characterized ammonium salts which are now gone, and observed sulfates being remobilized at the surface of the stone. They identified the high water and carbon contents, and noted similarities with the Alais meteorite, which had fallen in 1806, 300 km away. While Daubrée and his colleagues noted the similarity of the Orgueil organic matter with some terrestrial humus, they were cautious not to make a direct link with living organisms. One century later, Nagy and Claus were less prudent and announced the discovery of “organized” elements in some samples of Orgueil. Their observations were quickly discredited by Edward Anders and others who also discovered that some pollen grains were intentionally placed into the rock back in the 1860s. Orgueil is now one of the most studied meteorites, indeed one of the most studied rocks of any kind. Not only does it contain a large diversity of carbon‐rich compounds, which help address the question of organo‐synthesis in the early solar system but its chemical composition is also close to that of the Sun's photosphere and serves as a cosmic reference. Secondary minerals, which make up 99% of the volume of Orgueil, were probably formed during hydrothermal alteration on the parent‐body within the first few million years of the solar system; their study is essential to our understanding of fluid–rock interaction in asteroids and comets. Finally, the Orgueil meteorite probably originated from a volatile‐rich “cometary” outer solar system body as indicated by its orbit. Because it bears strong similarities to other carbonaceous chondrites that originated on dark asteroids, this cometary connection supports the idea of a continuum between dark asteroids and comets. 相似文献
12.
José C. Aponte Jason P. Dworkin Jamie E. Elsila 《Meteoritics & planetary science》2015,50(10):1733-1749
The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon‐rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound‐specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g?1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent‐body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound‐specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from –20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C‐depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)‐ and (S)‐sec‐butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the l ‐enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec‐butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of aqueous alteration observed over the monoamine concentrations in Orgueil and Murchison, and to evaluate the primordial synthetic relationships between meteoritic monoamines and amino acids. 相似文献
13.
M. Beech P. Brown R. L. Hawkes Z. Ceplecha K. Mossman G. Wetherill 《Earth, Moon, and Planets》1995,68(1-3):189-197
A general overview of the events surrounding the fall of the Peekskill meteorite is presented. 相似文献
14.
Z. Ceplecka P. Brown R. L. Hawkes G. Wetherill M. Beech K. Mossman 《Earth, Moon, and Planets》1995,71(3):395-404
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 104 kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall. 相似文献
15.
Ceplecha Z Brown P Hawkes RL Wetherill G Beech M Mossman K 《Earth, Moon, and Planets》1996,72(1-3):395-404
Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 10(4) kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5 degrees. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall. 相似文献
16.
V. a. Bronshten 《Meteoritics & planetary science》1999,34(Z4):A137-A143
Abstract— A critical survey is presented of all determinations of the azimuth and inclination of the Tunguska meteorite's trajectory based either on eyewitness testimonies or on the mathematical treatment of the forest-leveling field in the area of the catastrophe. The eyewitness testimonies collected in the neighborhood of the Nizhnyaya Tunguska River indicate the most probable azimuth of the trajectory projection to be 104° from the north to the east, which is close to the most recent azimuth estimate from the forest-leveling field, 99°. For the most part of the trajectory, its inclination could not exceed 15°. However, it is seen from aerodynamic calculations that the combined action of the gravity field and a nonzero aerodynamic lift could increase the inclination to 40° as the end of the trajectory was approached. Meteoroid orbits are calculated for a broad family of trajectories with azimuths ranging from 99° (Fast et al, 1976) to 137° (Krinov, 1949) and geocentric velocities ranging from 25 to 40 km/s. Orbits with large azimuth values (120° and larger) are shown to belong to the asteroidal type. They are succeeded by the orbits of short-period and long-period comets, whereas very small azimuth values and large geocentric velocities correspond to the region of hyperbolic orbits. Certain restrictions on the possible trajectory azimuths and geocentric velocities of the Tunguska body are imposed by this study. 相似文献
17.
L. BINET D. GOURIER S. DERENNE S. PIZZARELLO L. BECKER 《Meteoritics & planetary science》2004,39(10):1649-1654
Abstract— The radicals in the insoluble organic matter (IOM) from the Tagish Lake meteorite were studied by electron paramagnetic resonance and compared to those existing in the Orgueil and Murchison meteorites. As in the Orgueil and Murchison meteorites, the radicals in the Tagish Lake meteorite are heterogeneously distributed and comprise a substantial amount (?42%) of species with a thermally accessible triplet state and with the same singlet‐triplet gap, ΔE ?0.1 eV, as in the Orgueil and Murchison meteorites. These species were identified as diradicaloid moieties. The existence of similar diradicaloid moieties in three different carbonaceous chondrites but not in terrestrial IOM strongly suggests that these moieties could be “fingerprints” of the extraterrestrial origin of meteoritic IOM and markers of its synthetic pathway before its inclusion into a parent body. 相似文献
18.
G. V. Groves 《Planetary and Space Science》1961,5(4):314-320
Formulae relating atmospheric density to the rate of change of period of a satellite have been obtained by various workers for two asymptotic cases: (i) eccentricity e small (< 0.3) and (ii) e large (> 0.012). These results arc reviewed, and in the overlapping region, 0.012 < e < 0.3, the formulae are shown to be in agreement to the various orders of magnitude considered. 相似文献
19.
A contamination assessment of the CI carbonaceous meteorite Orgueil using a DNA‐directed approach 下载免费PDF全文
The Orgueil meteorite has become one of the most well‐studied carbonaceous meteorites, after it fell in France 150 yr ago. Extraterrestrial organic compounds such as amino acids and nucleobases in the parts per billion ranges were identified in Orgueil samples with supporting isotopic analyses. However, speculations of terrestrial contamination such as organic inclusions in the form of microbes and seeds accompanied the analyses of the Orgueil meteorite ever since its fall. By using molecular analysis, we performed DNA extractions and spiking experiments combined with 16S and 18S rRNA gene targeted PCR amplification to quantify the level of terrestrial biocontamination. Our results indicate that terrestrial contamination with DNA was insignificant in the investigated meteorite fraction. We also remeasured and confirmed concentrations of amino acids found in previous studies and conclude that their rather high concentrations and distribution cannot be explained by terrestrial contamination with microorganisms alone. These results represent the first analysis using DNA‐directed tools in the analysis of the Orgueil meteorite to determine trace levels of biomarkers. 相似文献