首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala–Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000–40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760–4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000–28,000 14C yr B.P. can be correlated with the excess rainfall, 40–100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000–4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (χ) to record the ecological shift in Late Holocene.  相似文献   

2.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

3.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

4.
In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Río Cóndor valley three subsequent advances have been identified.  相似文献   

5.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

6.
The authors discuss Late Pleistocene–Holocene depositional environments in one of the Fuegian Andes valleys on the basis of palynological, geomorphological, and sedimentological analyses from two sites located near the Beagle Channel. The results obtained at these localities reinforce and refine the Late Pleistocene–Holocene climatic pattern previously recorded there. A colder period, associated with the Younger Dryas stadial event, is suggested by low Nothofagus pollen frequency, and communities of grass, low scrub, and shrub heath expanded into the low/middle slopes (10,310 14C yr BP). By ca. 9500 14C yr BP, warmer and drier conditions occurred, as evidenced by the development of open-grown vegetation in the valley floors (pollen zone O-3), followed by the expansion of open Nothofagus woodland (pollen zone O-2) in the middle Holocene. The milder climate subsequently changed, as indicated by the spreading of the closed forest and mire (pollen zone O-1), to more humid and cooler conditions during the last ca. 5000 yr BP.  相似文献   

7.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

8.
This study presents a multiproxy record of Holocene environmental change in the region East of the Pechora Delta. A peat plateau profile (Ortino II) is analyzed for plant macrofossils, sediment type, loss on ignition, and radiocarbon dating. A paleosol profile (Ortino III) is described and radiocarbon dated. A previously published peat plateau profile (Ortino I) was analyzed for pollen and conifer stomata, loss on ignition, and radiocarbon dating. The interpretation of the latter site is reassessed in view of new evidence. Spruce immigrated to the study area at about 8900 14C yr B.P. Peatland development started at approximately the same time. During the Early Holocene Hypsithermal taiga forests occupied most of the present East-European tundra and peatlands were permafrost free. Cooling started after 5000 14C yr B.P., resulting in a retreat of forests and permafrost aggradation. Remaining forests disappeared from the study area around 3000 14C yr B.P., coinciding with more permafrost aggradation. The retreat of forests resulted in landscape instability and the redistribution of sand by eolian activity. The displacement of the Arctic forest line and permafrost zones indicates a warming of at least 2–3°C in mean July and annual temperatures during the Early Holocene. At least two cooling periods can be recognized for the second half of the Holocene, starting at about 4800 and 3000 14C yr B.P.  相似文献   

9.
Preliminary phytolith analysis of ephemeral lake fill sediment at Long Pocket, near Toomba, northeast Queensland, Australia, indicates that a C4-dominated grassland with a minor woody component has been present in the region since ca. 8000 cal yr B.P. Based on the modern distribution of C4 and C3 native grasses in Australia, this suggests that mean summer temperatures of at least 14°C (ca. 10°C cooler than present) were maintained since the early Holocene. This interpretation is comparable with previous studies, which together imply that the establishment of C4-dominated grasses in central and northeast Australia occurred between the last glacial maximum (most likely after ca. 16,000 14C yr B.P.) and ca. 7200 14C yr B.P. (ca. 8000 cal yr B.P.). Taxonomic composition of the grassland appears relatively consistent since the early Holocene at Long Pocket and includes phytoliths comparable with those from modern Arundinoideae, Panicoideae, and Chloridoideae. Rare non-grass phytoliths are also present. A gradual decrease in abundance of saddle phytolith forms (attributed to Chloridoideae grasses) from the base of the record at ca. 6500-7000 cal yr B.P. suggests decreasing aridity throughout the Holocene. This trend could reflect a locally drawn out effect of the end of the postglacial arid period due to the well-drained basalt flow catchment maintaining a local arid habitat for the Chloridoideae grasses.  相似文献   

10.
Holocene environments have been reconstructed by multiproxy studies of an 850-cm-long core from Rio Curuá dating to >8000 14C yr B.P. The low-energy river lies in the eastern Amazon rain forest in the Caxiuanã National Forest Reserve, 350 km west of Belém in northern Brazil. Sedimentological, mineralogical, and geochemical dates demonstrate that the deposits correspond to two different environments, sediments of an active river before 8000 14C yr B.P. and later a passive river system. The pollen analytical results indicate four different local and regional Holocene paleoenvironmental periods: (1) a transition to a passive fluvial system and a well-drained terra firme (unflooded upland) Amazon rain forest with very limited development of inundated forests (várzea and igapó) (>7990–7030 14C yr B.P.); (2) a sluggish river with a local Mauritia palm-swamp and similar regional vegetation, as before (7030–5970 14C yr B.P.); (3) a passive river, forming shallow lake conditions and with still-abundant terra firme forest in the study region (5970–2470 14C yr B.P.); and (4) a blocked river with high water levels and marked increase of inundated forests during the last 2470 14C yr B.P. Increased charcoal during this last period suggests the first strong presence of humans in this region. The Atlantic sea level rise was probably the major factor in paleoenvironmental changes, but high water stands might also be due to greater annual rainfall during the late Holocene.  相似文献   

11.
Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400–5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.  相似文献   

12.
Archaeological investigations in Camels Back Cave, western Utah, recovered a series of small-mammal bone assemblages from stratified deposits dating between ca. 12,000 and 500 14C yr B.P. The cave's early Holocene fauna includes a number of species adapted to montane or mesic habitats containing grasses and/or sagebrush (e.g., Lepus townsendii, Marmota flaviventris, Reithrodontomys megalotis, and Brachylagus idahoensis) which suggest that the region was relatively cool and moist until after 8800 14C yr B.P. Between ca. 8600 and 8100 14C yr B.P. these mammals became locally extinct, taxonomic diversity declined, and there was an increase in species well-adapted to xeric, low-elevation habitats, including ground squirrels, Lepus californicus and Neotoma lepida. The early small-mammal record from Camels Back Cave is similar to the 11,300–6000 14C yr B.P. mammalian sequence from Homestead Cave, northwestern Utah, and provides corroborative data on Bonneville Basin paleoenvironments and mammalian responses to middle Holocene desertification.  相似文献   

13.
The environmental history of the Northern Rocky Mountains was reconstructed using lake sediments from Burnt Knob Lake, Idaho, and comparing the results with those from other previously published sites in the region to understand how vegetation and fire regimes responded to large-scale climate changes during the Holocene. Vegetation reconstructions indicate parkland or alpine meadow at the end of the glacial period indicating cold-dry conditions. From 14,000 to 12,000 cal yr B.P., abundant Pinus pollen suggests warmer, moister conditions than the previous period. Most sites record the development of a forest with Pseudotsuga ca. 9500 cal yr B.P. indicating warm dry climate coincident with the summer insolation maximum. As the amplification of the seasonal cycle of insolation waned during the middle Holocene, Pseudotsuga was replaced by Pinus and Abies suggesting cool, moist conditions. The fire reconstructions show less synchroneity. In general, the sites west of the continental divide display a fire-frequency maximum around 12,000–8000 cal yr B.P., which coincides with the interval of high summer insolation and stronger-than-present subtropical high. The sites on the east side of the continental divide have the highest fire frequency ca. 6000–3500 cal yr B.P. and may be responding to a decrease in summer precipitation as monsoonal circulation weakened in the middle and late Holocene. This study demonstrated that the fire frequency of the last two decades does not exceed the historical range of variability in that periods of even higher-than-present fire frequency occurred in the past.  相似文献   

14.
Stratigraphic analysis of alluvial/colluvial sequences and 14C dating have been used as proxies for Holocene climate changes in the highlands of Tigray (northern Ethiopia). The studied records show alternations of buried soils and peaty–clayey sediments, pointing to wet, stabilization phases, and organic-free colluvium layers resulting from the abrupt occurrence of dry-climate episodes. The 14C dates, mostly unpublished, cluster in the 11,090–9915, 9465–9135, 8450–7330, 6720–3635, 2710–2345, and 1265–790 cal yr B.P. time spans. Evidence of subsequent pedogenesis is lacking in the area, apart from a buried humified horizon dated at 300 ± 60 14C yr B.P. (460–295 cal yr B.P.). Both the timing and the pattern of Tigray paleoclimatic events fit the corresponding framework, based on lake level changes, previously implemented for the Main Rift Valley. These findings give further support for arguing that the forcing mechanisms of the wet/dry fluctuations during the Holocene were effective over a large scale.  相似文献   

15.
Palynological and sedimentological data from Lake Telmen, in north-central Mongolia, permit qualitative reconstruction of relative changes in moisture balance throughout the mid to late Holocene. The climate of the Atlantic period (7500–4500 yr ago) was relatively arid, indicating that Lake Telmen lay beyond the region of enhanced precipitation delivered by the expanded Asian monsoon. Maximum humidity is recorded between 4500 and 1600 cal yr B.P., during the Subboreal (4500–2500 yr ago) and early Subatlantic (2500 yr–present) periods. Additional humid intervals during the Medieval Warm Epoch (1000–1300 A.D. or 950–650 ago) and the Little Ice Age (1500– 1900 A.D. or 450–50 yr B.P.) demonstrate the lack of long-term correlation between temperature and moisture availability in this region. A brief aridification centered around 1410 cal yr B.P. encompasses a decade of cold temperatures and summer frost between A.D. 536 and 545 (1414–1405 yr B.P.) inferred from records of Mongolian tree-ring widths. These data suggest that steppe vegetation of the Lake Telmen region is sensitive to centennial- and decadal-scale climatic perturbations.  相似文献   

16.
Palynological analysis of a core from the Atlantic rain forest region in Brazil provides unprecedented insight into late Quaternary vegetational and climate dynamics within this southern tropical lowland. The 576-cm-long sediment core is from a former beach-ridge “valley,” located 3 km inland from the Atlantic Ocean. Radio-carbon dates suggest that sediment deposition began prior to 35,000 14C yr B.P. Between ca. 37,500 and ca. 27,500 14C yr B.P. and during the last glacial maximum (LGM; ca. 27,500 to ca. 14,500 14C yr B.P.), the coastal rain forest was replaced by grassland and patches of cold-adapted forest. Tropical trees, such as Alchornea, Moraceae/Urticaceae, and Arecaceae, were almost completely absent during the LGM. Furthermore, their distributions were shifted at least 750 km further north, suggesting a cooling between 3°C and 7°C and a strengthening of Antarctic cold fronts during full-glacial times. A depauperate tropical rain forest developed as part of a successional sequence after ca. 12,300 14C yr B.P. There is no evidence that Araucaria trees occurred in the Atlantic lowland during glacial times. The rain forest was disturbed by marine incursions during the early Holocene period until ca. 6100 14C yr B.P., as indicated by the presence of microforaminifera. A closed Atlantic rain forest then developed at the study site.  相似文献   

17.
Holocene environmental changes in the northern Fertile Crescent remain poorly understood because of the scarcity of local proxy records in the region. In this study we investigated pedogenic (soil-formed) carbonate coatings on stones at the Pre-Pottery Neolithic site Göbekli Tepe as an indicator of local early-mid Holocene environmental changes. The 14C ages and stable isotopic composition of carbon and oxygen in thin (0.2–0.3 mm thick) pedogenic carbonate lamina indicate two main periods of coating formation: the early-Holocene (ca. 10000–6000 cal yr BP) and the mid-Holocene (ca. 6000–4000 cal yr BP). During the first period, there was an inverse relationship between δ13C and δ18O curves: a decrease in δ13C values coincide with an increase in δ18O values. For this period a trend towards higher temperatures is suggested. In the mid-Holocene, the mean rate of coating growth was 2–3 times higher than in the early Holocene. Both δ13C and δ18O reached their maximum values during this time and the direction of changes of the δ13C and δ18O curves became similar. The combination of data suggests that this period was the most humid in the Holocene and on average warmer than the early Holocene. At ca. 4000 cal yr BP secondary accumulation of carbonate ceased, presumably reflecting a shift to a more arid climate.  相似文献   

18.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

19.
This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.  相似文献   

20.
A new packrat midden chronology from Playas Valley, southwestern New Mexico, is the first installment of an ongoing effort to reconstruct paleovegetation and paleoclimate in the U.S.A.–Mexico Borderlands. Playas Valley and neighboring basins supported pluvial lakes during full and/or late glacial times. Plant macrofossil and pollen assemblages from nine middens in the Playas Valley allow comparisons of two time intervals: 16,000–10,000 and 4000–0 14C yr B.P. Vegetation along pluvial lake margins consisted of open pinyon–juniper communities dominated by Pinus edulis, Juniperus scopulorum, Juniperus cf. coahuilensis, and a rich understory of C4 annuals and grasses. This summer-flowering understory is also characteristic of modern desert grassland in the Borderlands and indicates at least moderate summer precipitation. P. edulis and J. scopulorum disappeared or were rare in the midden record by 10,670 14C yr B.P. The late Holocene is marked by the arrival of Chihuahuan desert scrub elements and few departures as the vegetation gradually became modern in character. Larrea tridentata appears as late as 2190 14C yr B.P. based on macrofossils, but may have been present as early as 4095 14C yr B.P. based on pollen. Fouquieria splendens, one of the dominant desert species present at the site today, makes its first appearance only in the last millennium. The midden pollen assemblages are difficult to interpret; they lack modern analogs in surface pollen assemblages from stock tanks at different elevations in the Borderlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号