首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the frame of the development of a photogrammetric system to be used in thermal/vacuum chambers at the European Space Research and Technology Centre (ESTEC) of European Space Agency (ESA) and other sites across Europe, the design of a network using micro-cameras was specified by ESA-ESTEC. A thermal/vacuum qualified photogrammetric system, which is able to work and acquire images in vacuum and at cryo-temperatures, was constructed by ESA-ESTEC Test Centre Division. The current system uses four space qualified one-mega pixel cameras and is able to measure large space structures in vacuum and at temperatures down to ?170 °C with a global accuracy better than 1 part per 100,000 in object space. Several tests aiming at the qualification of the sensors and system in terms of operation and accuracy have been carried out. Special measures have been developed and special attention has been taken into account specifically for the first application of the photogrammetric system. It is to verify the ESA’s Herschel Telescope Flight Model alignment positioning.  相似文献   

2.
This paper describes work undertaken to measure deformation of a pavement within the Newcastle University Rolling Load Facility (NUROLF). Precise three dimensional measurements of the pavement have been produced from stereo-imagery taken with diVerent cameras, using both analytical and digital photogrammetric instrumentation. The photogrammetric measurements, and those from the existing system consisting of an array of linear voltage displacement transducers, have been compared with measurements produced using a digital level. Encouraging results have been achieved and photogrammetry has been shown to be capable of producing a similar accuracy to the existing system. There are many advantages associated with a photogrammetric survey but attempts to establish a permanent, automated photogrammetric system for the rolling load facility at a reasonable cost have so far been unsuccessful. It is anticipated that, with the falling cost of high resolution digital sensors, such a system will soon be possible.  相似文献   

3.
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.  相似文献   

4.
5.
Since the earliest days of photogrammetry, there have been photogrammetrists who have directed research effort towards medical measurement. Although the specific motivation for these studies has not always been disclosed, it is probably because of the various benefits that photogrammetry can offer to humanity as a painless and non-invasive means of providing medical practitioners with spatial measurement relating to the human body. The intention of this paper is to reflect on the place of the many medical developments within the photogrammetric world. The various photogrammetric applications in medicine are summarised to identify the characteristics of medical photogrammetry, and it becomes evident that medical photogrammetrists have developed a range of body measurements using widely varying photogrammetric techniques, in response to the demands for specialised spatial measurement tools for a wide variety of medical ends. This volume of research activity has made medical measurement a substantial and varied sector of non-mapping photogrammetry. It is also clear that there are numerous challenges to the design of medical photogrammetric systems. They must give paramount consideration to the human patients and their comfort; they must yield not simply spatial data about the body but rather specific medical information. At the same time, it is of concern that non-photogrammetric scientists and engineers have developed medical measurement systems based on both photogrammetric and other optical techniques. Fortunately, photogrammetrists can also contribute to medical problems through their spatial data experiences. It is concluded that the many distinctive challenges mean that medical photogrammetry has not yet been as successful at changing the world as the extensive efforts applied to it suggest, but nevertheless, medical photogrammetry deserves to be recognised as a category of close range photogrammetry which remains a valuable pursuit which should not be abandoned because of any difficulties.  相似文献   

6.
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.  相似文献   

7.
It is well recognised that data volume represents a huge overhead for softcopy photogrammetry. For example, a file size of 100 Mbytes will be generated from a black and white aerial photograph if digitised with a resolution of 20μm. Large data volumes not only create storage problems but also affect the speed of image processing. As a consequence, data compression of image data is a matter of great significance. This paper describes an investigation into the effects of image compression on the accuracy of digital terrain models (DTMs) extracted from the compressed images. The JPEG system implemented in the Z/I Imaging ImageStation digital photogrammetric workstation (DPW) was used in the study. A systematic test has been carried out on the effect of different levels of JPEG compression (with Q-factors from 1 to 100) on the resulting DTM, which is automatically generated by the DPW using Match-T software. An analysis of the results from the two sites tested shows that image compression tends to cause more significant degradation when the image texture is richer, but that recommendations on Q-factors for use with the ImageStation appear to err on the side of caution. This analysis leads to some tentative conclusions and recommendations both for future investigation and for photogrammetric practice.  相似文献   

8.
In recent years, ocean tide loading displacements (OTLD) have been measured using the Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI). This study assesses the accuracy of GPS measurements of OTLD by comparison with VLBI measurements and estimates derived from numerical ocean tide models. A daily precise point positioning (PPP) analysis was carried out on ∼11 years of GPS data for each of 25 sites that have previous OTLD estimates based on data from co-located VLBI sites. Ambiguities were fixed to integer values where possible. The resulting daily estimates of OTLD, at eight principal diurnal and semi-diurnal tidal frequencies, were combined to give GPS measurements of OTLD at each site. The 3D GPS and VLBI measurements of OTLD were compared with estimates computed (by convolution with Green’s functions) from five modern ocean tide models (CSR4.0, FES2004, GOT00.2, NAO99b and TPXO6.2). The GPS/model agreement is shown to be similar to the VLBI/model agreement. In the important radial direction, the GPS/model misfit is shown to be smaller than the VLBI/model misfit for seven of the eight tidal constituents; the exception being the K2 constituent. Fixing of GPS carrier-phase ambiguities to integer values resulted in a marginal improvement to the GPS/model agreement. Statistically, it is shown there is no significance to the difference between the fit of the GPS and VLBI measurements of OTLD to modelled values. Equally, differences in fit of either the complete set of GPS or VLBI estimates to the five sets of model-derived values cannot be identified with statistical significance. It is thus concluded that, overall, we cannot distinguish between GPS and VLBI measurements of OTLD, and that at the global scale, present ocean tide models are accurate to within the current measurement noise of these techniques.  相似文献   

9.
The Department of Geomatics and the Regional Centre for Innovation in Engineering Design in the University of Newcastle upon Tyne collaborated in a project to produce precise measurements for use in the fabrication of the body of the "Angel of the North" sculpture. This 20 m high edifice, by the sculptor Antony Gormley, is located adjacent to the A1(M) in Gateshead, Tyne and Wear.
This paper reviews the photogrammetric reverse engineering work carried out on a 1:10 scale plaster maquette of the "Angel of the North", which is a life-size model of the sculptor's body without any arms. The three dimensional measurements of the maquette, made by analytical photogrammetric techniques, were then processed to produce a fully functional three dimensional CAD model from which the dimensions needed by the fabricating company, Hartlepool Steel Fabrications Ltd., could be extracted. Additionally, the VirtuoZo digital photogrammetric software package was used to investigate the potential of automated measurement for this type of work and the results were compared with those obtained analytically.  相似文献   

10.
Several generations of photogrammetric workstations have followed one another since the analytical plotter was developed at the beginning of the 1960s. The outcome of this evolution, resulting from important developments in mini- and microcomputers, is illustrated today by more and more powerful photogrammetric workstations based on distributed processing architecture. This paper introduces present day architectures, as well as hardware and software aspects of the various components of these systems including graphics workstation, real time processor, superimposition system, correlation system and special input/output devices. Finally, an attempt is made to outline the prospects for further evolution.  相似文献   

11.
Harnessing the radiometric information provided by photogrammetric flights could be useful in increasing the thematic applications of aerial images. The aim of this paper is to improve relative and absolute homogenization in aerial images by applying atmospheric correction and treatment of bidirectional effects. We propose combining remote sensing methodologies based on radiative transfer models and photogrammetry models, taking into account the three-dimensional geometry of the images (external orientation and Digital Elevation Model). The photogrammetric flight was done with a Z/I Digital Mapping Camera (DMC) with a Ground Sample Distance (GSD) of 45 cm. Spectral field data were acquired by defining radiometric control points in order to apply atmospheric correction models, obtaining calibration parameters from the camera and surface reflectance images. Kernel-driven models were applied to correct the anisotropy caused by the bidirectional reflectance distribution function (BRDF) of surfaces viewed under large observation angles with constant illumination, using the overlapping area between images and the establishment of radiometric tie points. Two case studies were used: 8-bit images with applied Lookup Tables (LUTs) resulting from the conventional photogrammetric workflow for BRDF studies and original 12-bit images (Low Resolution Color, LRC) for the correction of atmospheric and bidirectional effects. The proposed methodology shows promising results in the different phases of the process. The geometric kernel that shows the best performance is the Lidense kernel. The homogenization factor in 8-bit images ranged from 6% to 25% relative to the range of digital numbers (0–255), and from 18% to 35% relative to levels of reflectance (0–100) in the 12-bit images, representing a relative improvement of approximately 1–30%, depending on the band analyzed.  相似文献   

12.
THE APPLICATION OF PHOTOGRAMMETRY TO THE STABILITY OF EXCAVATED ROCK SLOPES   总被引:5,自引:0,他引:5  
The use of phototheodolite photography and the subsequent photogrammetric measurements as the basis for slope stability analysis in open pit mines is described together with the application of stereometric photography to the measurement of roughness profiles on real and model rock samples. A single camera technique for the measurement of displacements occurring during the excavation of a model rock slope is explained.  相似文献   

13.
Hierarchical approaches for automated photogrammetric surface measurement invariably employ image pyramids and image matching at multiple resolutions. Such an approach is also applicable in industrial photogrammetry where projected light patterns are used to provide texture on an otherwise texture-free surface. This paper describes a novel strategy for hierarchical surface measurement in which projected non-repeating target patterns are employed, rather than the lower-resolution levels of an image pyramid. Thus, although the final derived digital surface model is obtained by image matching, preliminary surface models which support the matching are obtained using the non-repeating patterns. These projected patterns allow a simplification of the triangulation phase since they offer the potential of a fast and unambiguous solution to the image point correspondence problem. Following an introduction to the non-repeating pattern strategy, integration of the approach into a multi-camera vision metrology system is described and some experimental measurements are summarized  相似文献   

14.
15.
A new approach to estimate soil moisture (SM) based on evaporative fraction (EF) retrieved from optical/thermal infrared MODIS data is presented for Canadian Prairies in parts of Saskatchewan and Alberta. An EF model using the remotely sensed land surface temperature (Ts)/vegetation index concept was modified by incorporating North American Regional Reanalysis (NAAR) Ta data and used for SM estimation. Two different combinations of temperature and vegetation fraction using the difference between Ts from MODIS Aqua and Terra images and Ta from NARR data (Ts−Ta Aqua-day and Ts−Ta Terra-day, respectively) were proposed and the results were compared with those obtained from a previously improved model (ΔTs Aqua-DayNight) as a reference. For the estimation of SM from EF, two empirical models were tested and discussed to find the most appropriate model for converting MODIS-derived EF data to SM values. Estimated SM values were then correlated with in situ SM measurements and their relationships were statistically analyzed. Results indicated statistically significant correlations between SM estimated from all three EF estimation approaches and field measured SM values (R2 = 0.42–0.77, p values < 0.04) exhibiting the possibility to estimate SM from remotely sensed EF models. The proposed Ts−Ta MODIS Aqua-day and Terra-day approaches resulted in better estimations of SM (on average higher R2 values and similar RMSEs) as compared with the ΔTs reference approach indicating that the concept of incorporating NARR Ta data into Ts/Vegetation index model improved soil moisture estimation accuracy based on evaporative fraction. The accuracies of the predictions were found to be considerably better for intermediate SM values (from 12 to 22 vol/vol%) with square errors averaging below 11 (vol/vol%)2. This indicates that the model needs further improvements to account for extreme soil moisture conditions. The findings of this research can be potentially used to downscale SM estimations obtained from passive microwave remote sensing techniques.  相似文献   

16.
17.
The presence of air and liquid, or two phase flow, in gas turbine oil or fuel systems poses performance analysis problems. Conventional instrumentation is invasive and, by its presence, changes the nature of the flow itself In order to analyse a system comprehensively, a number of non-invasive measurements are preferable. One of the objectives of this project was to determine the feasibility of photogrammetry for this task. The study has fallen into two parts. The first part which has been completed, and is reported here, concerns an investigation of the problems of applying the photogrammetric technique by using stereoscopic images of two phase flow structures and measuring them using calibrated equipment. This has been successful and valuable experience has been gained. Images have been analysed and scientific data obtained. However the nature of the flow is transient and a series of isolated images do not describe the processes and may lead to ambiguities. For this reason, the opportunity provided by John Hadland Ltd. to use the Spin Physics SP2000 High Speed Video system in August, 1984 was taken; using calibrated twin video cameras, the first high speed digital video photogrammetric system was thus operated. Accuracies in three dimensions of better than 0.5 mm are claimed for this experimental work at 1000 fiames s-I.  相似文献   

18.
The determination of the local gravity field from sensors mounted in a fixed wing aircraft has long been a dream of geodesists and geophysicists. The progress in sensor technology during the last decade has brought its realization within reach and recent tests indicate that results at the level of a fewmGal are possible. To assess different sensor configurations and their effect on the resolution of the gravity field spectrum, a state model for motion in the gravity field of the earth is formulated. The resulting set of differential equations can accommodate first and second order gravity gradients, specific force, kinematic acceleration, vehicle velocity and position as input. It offers therefore a rather general framework for gravity field determination from a variety of kinematic sensors, such as gravity meters, gravity gradiometers, inertial systems, differentialGPS, laser altimeters and others. The derivation of the basic kinematic model and its linearization are given in detail, while sensor error models are discussed in a generic way. A few remarks on the modelling of gravity gradiometer measurements conclude the paper.  相似文献   

19.
20.
Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号