首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
This paper presents some tests on the empirical Green's function method, performed in order to check its effectiveness to predict strong ground motion during future large earthquakes. These investigations basically consist of blind or pseudo-blind tests using part of the data set obtained at the Volvi (Greece) test-site within the framework of the EURO-SEISTEST project. In a first step, a moderate event (ML=4.1) is simulated by using a small event (ML=2.5), and taking into account the a priori knowledge of the relevant source parameters (magnitude and stress-drop) for both the base and target events. This check emphasizes the sensitivity of the prediction to the stress-drop values. In a second step, a pseudo-blind prediction is carried out in which the information on the target event is only the magnitude (ML=5.3) besides the geometrical parameters such as source location, strike and dip. The other important parameters (seismic moment, fault area, stress-drop) are determined on the basis of specific empirical scaling laws derived from several small and moderate events occurring in the area. The synthetic motions are computed for two nearby sites, which are located on the southern edge and in the center of the Mygdonian graben, respectively, and correspond to much different site conditions: weathered rock and thick sediments. They are found in good agreement with the observations, which were unveiled after the simulation. In particular, the amplitude and the phase of the late, local surface waves generated on the southern edge of the graben, are very well reproduced at valley center. Finally, the last step is an attempt to predict strong ground motion for a hypothetical large earthquake of magnitude ML=6.5. The results are shown to depend very significantly on the scaling laws.  相似文献   

2.
The concept of "numerical Green’s functions" (NGF or Green’s function database) is developed. The basic idea is: a large seismic fault is divided into subfaults of appropriate size, for which synthetic Green’s functions at the surface (NGF) are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated, rapidly, for the whole fault or parts of it by superposition. The target fault is a simplified, vertical model of the Newport-Inglewood fault in the Los Angeles basin. This approach and its functionality are illustrated by investigating the variations of ground motions (e.g. peak ground velocity and synthetic seismograms) due to the source complexity. The source complexities are considered with two respects: hypocenter location and slip history. The results show a complex behavior, with dependence of absolute peak ground velocity and their variation on source process directionality, hypocenter location, local structure, and static slip asperity location. We concluded that combining effect due to 3-D structure and finite-source is necessary to quan- tify ground motion characteristics and their variations. Our results will facilitate the earthquake hazard assessment projects.  相似文献   

3.
随着川滇地区强震记录的不断增加,为了建立更符合该区域地震动特征的预测模型,文中基于该区域现有的地震动数据,通过随机效应回归模型建立适用于川滇地区的地震动预测模型;2021年5月21日,云南省大理州漾濞县发生6.4级地震,为了分析文中预测模型对漾濞地震的适用性,首先根据预测模型的适用范围选取合适的漾濞地震数据,计算真实记...  相似文献   

4.
This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes Mw 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites.  相似文献   

5.
This article presents equations for the estimation of horizontal strong ground motions caused by shallow crustal earthquakes with magnitudes Mw 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is not large and corresponds to factors between 0.8 (normal and odd) and 1.3 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.6 over those on rock sites. Disappointingly the standard deviations associated with the derived equations are not significantly lower than those found in previous studies.  相似文献   

6.
2010年4月4日墨西哥Baja地区发生MW7.2地震,2人遇难; 同年4月14日中国青海省南部玉树地区发生MW6.9地震,截至2010年4月25日,已造成2 220人遇难.有报道指出,玉树地震矩震级小于Baja地震,人员伤亡却远大于后者,主要原因在于玉树地区抗震设防标准低、建筑物抗震性能差.地震造成破坏程度的大小并非仅仅取决于矩震级的大小,而同时与其释放的地震波辐射能及发震后造成的强地面运动的大小有关. 玉树地震释放的地震波辐射能约相当于Baja地震的10倍,目前玉树地震尚无实测的强震记录.针对玉树地震和Baja地震建立动态复合震源模型,分别模拟基岩上及浅层速度结构(V30,地下30 m平均剪切波速)下近断层区域的强地面运动.结果表明,基岩上及V30下玉树地震近断层区域强地面运动整体约相当于Baja地震的2倍.因此,玉树地震造成发震区域内建筑物损毁程度及人员伤亡情况均严重于Baja地震,重要原因之一在于其地震波辐射能大,且强地面运动较强.本文中所应用的动态复合震源模型,在地震矩守恒和地震波辐射能守恒的条件约束下,可以作为地震发生后补充强地面运动数据的有效手段之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号