首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
三江源区植被指数对气候变化的响应及预测分析   总被引:2,自引:0,他引:2  
朱文会  毛飞  徐影  郑军  宋立雪 《高原气象》2019,38(4):693-704
利用1989—2008年NOAA-AVHRR的NDVI旬合成资料和地面月降水量、平均气温等观测资料,分析了三江源区NDVI时空变化特征及其对气候要素变化的响应。通过建立不同季节NDVI统计预测模型,对未来40多年间不同排放情景下三江源区NDVI变化趋势进行预测分析,研究结果表明:(1)三江源区NDVI分布呈现由东南部、东部向西、向北逐渐变低的趋势。4—10月为植被生长季,8月NDVI达最大值。(2)针对春、夏、秋季,NDVI与气温、降水均呈显著正相关(夏季降水除外),春、秋季较为显著; NDVI对气温的响应显著高于降水; NDVI对前一个月的气温、降水时滞效应最为显著。(3)未来40年,在三江源区气温持续升高,降水微弱增加的气候背景下,源区平均NDVI呈显著上升趋势,前10年增速缓慢,后30年持续稳步上升,且增幅较大。源区NDVI空间分布格局基本不变,RCP8. 5情景下NDVI的高值中心较RCP4. 5范围更大。RCP4. 5情景下NDVI迅速增长期为2026—2035年,高值中心位于澜沧江源区; RCP8. 5情景下为2016—2025年和2036—2045年两阶段,高值中心均在长江源区。两种情景下,源区变率高值中心均表现出由北向南移动的趋势。  相似文献   

2.
中国长江三角洲地区人口稠密,经济发达,在全球气候变暖的背景下未来长江三角洲地区干旱和洪涝灾害风险也将发生变化。本文利用耦合模式比较计划第五阶段(Coupled Model Inter-comparison Project Phase 5,CMIP 5)中26个全球气候模式的模拟结果,对不同预估情景下长江三角洲地区未来50 a(2021—2040年和2046—2065年)两个时期干旱和洪涝灾害风险的变化进行定量预估。结果表明:未来50 a长江三角洲地区干旱和洪涝灾害呈由北向南风险强度降低的空间分布特征。由RCP(Representative Concentration Pathways) 2.6情景至RCP 8.5情景,长江北部地区洪涝灾害风险逐渐增加,而干旱灾害风险变化略有差异。在RCP 8.5情景下,未来50 a第二个时期(2046—2065年)长江三角洲地区干旱和洪涝灾害风险为所有情景中最大,高于IV级(包括IV级)的面积增加,江苏北部和安徽北部地区为V级干旱灾害风险与IV级洪涝灾害风险叠加区域,而江苏南部和上海地区为干旱与洪涝灾害最高等级风险(V级)叠加区域。  相似文献   

3.
以全球气候模式NorESM1-M产生的RCP2.6、RCP4.5、RCP6.0、RCP8.5气候变化情景数据和原环保部推荐的土壤风蚀扬尘计算方法,模拟分析了未来气候变化对河北坝上砂粘壤土、粘壤土、壤粘土、砂壤土、砂粘土和风沙土草地土壤风蚀扬尘总可悬浮颗粒物(Total Suspended Particle,TSP)、PM10和PM2.5的季节及年排放速率的影响。结果表明:气候变化影响下坝上地区气温上升,年降水量和风速波动较大、并存在上升和下降的趋势。相比基准情景,在RCP2.6、RCP4.5、RCP6.0和RCP8.5情景下,各土壤风蚀扬尘TSP、PM10和PM2.5季节排放速率在春季分别高15%、47%、28%和46%;秋季分别高17%、54%、45%和38%;冬季分别低36%、42%、39%和44%;夏季,在RCP2.6情景下低1%,在RCP4.5、RCP6.0和RCP8.5情景下分别高14%、3%和7%;未来气候变化情景下,各土壤风蚀扬尘TSP、PM10和PM2.5年排放速率分别高25%、54%、35%和54%。基准和未来气候变化情景下,土壤风蚀扬尘TSP、PM10和PM2.5的季节和年排放速率及其差异从高到低均依次为砂粘壤土、风沙土、砂壤土、粘壤土、壤粘土和砂粘土。表明未来气候变化将使河北坝上地区草地土壤风蚀扬尘排放速率增加,但存在季节和气候变化情景方面的差异。  相似文献   

4.
利用耦合模式比较计划第5阶段(CMIP5)17个全球气候模式的模拟结果和SSPs社会经济预估数据对RCP4.5和RCP8.5排放情景下中国地区21世纪暴雨洪涝灾害风险的可能变化进行分析。结果表明:21世纪末,极端强降水事件将增加,且极端降水的强度和频率也将增强;暴雨洪涝风险可能随时间呈增加趋势,RCP8.5高排放情景下100 a重现期的洪涝风险更为明显;21世纪RCP4.5和RCP8.5情景下10 a和100 a重现期GDP物理暴露度都将增加;RCP4.5情景下,POP物理暴露度随时间的推移呈先增长后减小趋势,RCP8.5情景下则持续增长。区域分布来看,未来暴雨洪涝风险较高的地区集中在中国中东部及沿海地区,相对于1961—2005年基准期,低风险区面积将缩小,中高以上风险区(Ⅳ和Ⅴ级)面积不断扩大,尤其是高风险区(Ⅴ级)面积扩大更加明显。21世纪,10 a重现期暴雨洪涝灾害中高以上风险区域(Ⅳ和Ⅴ级)面积在RCP4.5情景下随时间多呈先增加后减小的趋势,在RCP8.5情景下不断增大;100 a重现期中高以上风险区域面积在2个排放情景下都呈不断增加趋势。  相似文献   

5.
采用应用于跨行业影响模式比较计划(ISIMIP)的5个CMIP5全球气候模式模拟的历史和未来RCP排放情景下的逐日降水数据,在评估模式对汉江流域1961—2005年极端降水变化特征模拟能力的基础上,进一步计算了RCP2.6、RCP4.5和RCP8.5排放情景下汉江流域未来2016—2060年极端降水总量(R95p)、极端降水贡献率(PEP)、连续5 d最大降水(RX5d)和降水强度(SDII),结果表明:RCP4.5情景下的极端降水指数上升最明显,R95p和RX5d分别较基准期增加12.5%和8.2%,PEP增加3.2个百分点,SDII微弱上升。在不同排放情景下,PEP均有一定的增幅,以流域西北和东南部增幅较大;R95p在流域绝大部分区域表现出一定的增加,且流域东南部和北部是增幅高值区;RX5d在RCP2.6和RCP4.5情景下整体表现为增加的特征,但在RCP8.5情景下整体表现为减少的特征。对极端降水预估的不确定性中,SDII的不确定性最小,RX5d的不确定性最大;不确定性大值区主要位于流域东部、东南部和西北部部分区域。  相似文献   

6.
辽河流域属于气候变暖较为显著区域,增温幅度比全球和全国的增温幅度都要高。同时辽河流域也是水资源较为匮乏且需求量大的地区,因此气候变化对水资源影响问题也更值得关注。基于长期历史观测气象水文数据和未来不同情景下气候变化预估资料,建立评估气候变化与径流量的关系,预估未来气候变化对径流量的可能影响,为辽河流域应对气候变化决策提供科学依据。结果表明:1961—2020年,辽河流域气温为持续上升趋势,降水没有明显的增减趋势,但存在阶段性变化;辽河流域降水量与径流量有较好的相关关系,具有较为一致的长期变化趋势与特征,年降水量与径流量相关数达到0.6以上。日降水量与径流量相关分析表明,降水发生后次日且为大雨降水等级(即日降水量≥25 mm)时,两者相关系数可高达0.85;敏感性试验和模式模拟试验表明,径流量对气候变化有明显的响应,降水增加(减少)、气温降低(升高),则径流量增加(减少);在未来RCP8.5排放情景下气温升高趋势最为明显,未来径流量也为显著增加趋势;RCP2.6排放情景下气温增加的幅度最小,未来径流量也表现为无明显增减趋势;RCP4.5情景下,气温增加的幅度居中,未来径流量则为减少趋势。  相似文献   

7.
依据政府间气候变化委员会(IPCC)第五次评估报告(AR5)未来不同排放情景(RCPs)下的多模式(CMIP5)气温和降水预估结果,构建基于气温和降水的未来径流量预估模型,并以宜昌站为例分析了不同模式不同排放情景下未来80年(2020~2099年)长江上游年径流量的变化趋势。多模式集合平均预估结果表明:在99%的置信水平下,未来80年长江上游年径流量在RCP2.6排放情景下呈不显著增加趋势,在RCP4.5排放情景下呈不显著减小趋势,而在RCP8.5排放情景下则呈显著减小趋势;在RCP2.6、RCP4.5和RCP8.5排放情景下未来80年长江上游年径流量预估均值相对于1961~2000年分别减少6.42%、10.99%和13.25%;同时,未来80年长江上游年径流量变化具有一定的年代际特征,在RCP2.6和RCP4.5排放情景下21世纪初期偏多、中期偏少而后期变化并不明显,在RCP8.5排放情景下则是21世纪中期以前偏多而中期以后明显偏少。本研究方法可为未来气候变化情景预估分析提供技术参考,本研究成果可供气候变化背景下长江上游乃至长江流域水资源开发利用及对策分析提供决策依据。   相似文献   

8.
与深水湖泊相比,太湖等浅水湖泊更容易发生富营养化和水资源危机,且对气候变化的响应更为敏锐。本文利用气候模式产品数据驱动CLM4-LISSS湖泊陆面过程模型,模拟分析未来(2010—2100年)RCP2.6、RCP4.5、以及RCP8.5不同温室气体排放情景下太湖蒸发量的变化特征及其影响因子。结果表明:(1)CLM4-LISSS模型湖表温度的观测值与模拟值的相关系数为0.94,均方根误差为0.85℃,准确的湖表气温模拟使得通量的结果也比较准确,潜热模拟与观测的相关系数在0.78,均方根误差为55.32 W·m~(-2);(2)2010—2100年,三种不同温室气体排放情景下太湖蒸发都呈现增加的趋势,但增量比例不同,RCP2.6,RCP4.5和RCP8.5情景下,蒸发量每10 a增加量分别为23.7 mm,29.2 mm和34.5 mm。蒸发量的增加速率随着辐射强迫的增加而增大,其变化主要受风速与水汽压差的乘积的影响。  相似文献   

9.
选取中国东部季风区南方赣江流域和北方官厅流域,基于逐日气象和水文观测数据率定和验证了HBV水文模型,并以国际耦合模式比较计划第五阶段(CMIP5)中输出要素最多的5个全球气候模式在3种典型浓度路径(RCP2.6、RCP4.5和RCP8.5)下的预估结果驱动HBV模型,预估了气候变化对21世纪两个流域径流的影响。结果表明:(1) 1961—2017年,赣江和官厅流域年平均气温均呈显著上升趋势,升温速率分别为0.17℃/(10 a)和0.28℃/(10 a);同期,赣江流域降水显著增加,官厅流域降水微弱下降。不同RCP情景下,21世纪两个流域均将持续变暖、降水有所增加,北方官厅流域的气温和降水增幅均大于南方赣江流域。(2) 21世纪,官厅流域年、季径流增幅远大于赣江流域。官厅流域年径流在近期(2020—2039年)、中期(2050—2069年)、末期(2080—2099年)均呈增加趋势,RCP8.5情景下增幅最大、RCP4.5最小。赣江流域在RCP4.5下,近期、中期年径流相对基准期略有减少,但在整个21世纪径流呈上升趋势;RCP2.6和RCP8.5下,21世纪中期以后径流增幅下降。(3) 21世纪,东部季风区北部的官厅流域发生洪涝、南方赣江流域发生干旱的可能性增大,不同RCP情景预估得到相同的结论。  相似文献   

10.
利用SWAT模型和IPCC第五次评估报告中全球气候模式BCC-CSM 1.1数据,对未来气候变化RCP 2.6、RCP 4.5、RCP 8.5共3种典型排放情景对洪湖流域水资源的影响进行了模拟研究。结果表明:SWAT模型对洪湖流域供水资源模拟的适用性较好,洪湖流域在未来RCP 2.6、RCP 4.5、RCP 8.5排放情景下的温度增幅分别为1.4℃、1.9℃和2.4℃,降水变率分别为-3.20%、7.60%和7.90%。SWAT模型模拟结果表明,未来3种情景下随着温度上升洪湖流域实际蒸散发量均略增加,径流受降水影响显著且变化不同,RCP 4.5和RCP 8.5情景下地表径流及地下径流均增加,RCP 8.5情景比RCP4.5情景下地表径流增加多;且各种重现期的洪峰流量和洪水发生频次均增加,RCP 2.6情景下地表径流和地下径流减少。3种情景下径流变异系数较基准期均略增大,说明洪湖流域发生干旱和洪涝的可能性增大,水资源可控性和利用率降低。  相似文献   

11.
Time of Emergence (ToE) is the time at which the signal of climate change emerges from the background noise of natural climate variability, and can provide useful information for climate change impacts and adaptations. This study examines future ToEs for daily maximum and minimum temperatures over the Northeast Asia using five Regional Climate Models (RCMs) simulations driven by single Global Climate Model (GCM) under two Representative Concentration Pathways (RCP) emission scenarios. Noise is defined based on the interannual variability during the present-day period (1981-2010) and warming signals in the future years (2021-2100) are compared against the noise in order to identify ToEs. Results show that ToEs of annual mean temperatures occur between 2030s and 2040s in RCMs, which essentially follow those of the driving GCM. This represents the dominant influence of GCM boundary forcing on RCM results in this region. ToEs of seasonal temperatures exhibit larger ranges from 2030s to 2090s. The seasonality of ToE is found to be determined majorly by noise amplitudes. The earliest ToE appears in autumn when the noise is smallest while the latest ToE occurs in winter when the noise is largest. The RCP4.5 scenario exhibits later emergence years than the RCP8.5 scenario by 5-35 years. The significant delay in ToEs by taking the lower emission scenario provides an important implication for climate change mitigation. Daily minimum temperatures tend to have earlier emergence than daily maximum temperature but with low confidence. It is also found that noise thresholds can strongly affect ToE years, i.e. larger noise threshold induces later emergence, indicating the importance of noise estimation in the ToE assessment.  相似文献   

12.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

13.
气候变化背景下中国小麦需水量的敏感性研究   总被引:1,自引:0,他引:1  
利用CROPWAT作物模型模拟分析了过去50年(1961-2010年)及IPCC RCPs情景下未来2020年代(2020-2029年)中国小麦需水量的变化情况。在此基础上,以小麦需水量的变化率作为敏感性因子,对RCP4.5和RCP8.5排放情景下中国小麦需水量的敏感性进行了探讨。结果表明:中国小麦多年平均需水量约为1056.4亿m3,最高值位于黄淮海地区。小麦需水量对气候变化的敏感性存在空间差异,华北和西北地区是小麦需水量的重度和极度敏感区,东北地区以及云贵高原地带是小麦需水量的轻度敏感区,而中国中部及南方部分地区的小麦需水量对气候变化不敏感。不同RCP排放情景下小麦需水量的敏感性分布不同,RCP8.5高排放情景下的小麦需水量敏感性区域比RCP4.5中排放情景下明显扩大,轻度和中度敏感区域扩大尤为明显。  相似文献   

14.
黑龙江省未来41年气候变化趋势与突变分析   总被引:1,自引:0,他引:1  
选用由英国Hadley中心区域气候模式系统PRECIS构建的基准时段(1961—1990年)和未来时段(2010--2050年)A2、B2情景气候数据,应用线性倾向估算法、累积距平及Mann—Kendall法对排放情景特别报告(SRES)中A2和B2情景下黑龙江省2010--2050年的平均气温、平均最高最低气温、降水量的变化趋势和突变进行了分析。结果表明:相对于基准气候(1961--1990年),未来41a平均气温表现出明显的上升趋势,A2、B2情景下年均气温分别升高1.63℃和1.94℃,突变分别发生在2031年和2033年;相对于基准气候,A2、B2情景下未来41a降水量分别增加5.3%和1.1%,降水量变化趋势不同,A2情景下为4.03mm/10a,B2情景下为5.94mm/10a,但趋势均不显著,且没有突变发生。总体上,黑龙江省未来41a的气候为向暖湿变化的趋势。  相似文献   

15.
This study examines the projections of hydroclimatic regimes and extremes over Andean basins in central Chile (~ 30–40° S) under a low and high emission scenarios (RCP2.6 and RCP8.5, respectively). A gridded daily precipitation and temperature dataset based on observations is used to drive and validate the VIC macro-scale hydrological model in the region of interest. Historical and future simulations from 19 climate models participating in CMIP5 have been adjusted with the observational dataset and then used to make hydrological projections. By the end of the century, there is a large difference between the scenarios, with projected warming of ~ + 1.2 °C (RCP2.6), ~ +?3.5 °C (RCP8.5) and drying of ~ ? 3% (RCP2.6), ~ ? 30% (RCP8.5). Following the strong drying and warming projected in this region under the RCP8.5 scenario, the VIC model simulates decreases in annual runoff of about 40% by the end of the century. Such strong regional effect of climate change may have large implications for the water resources of this region. Even under the low emission scenario, the Andes snowpack is projected to decrease by 35–45% by mid-century. In more snowmelt-dominated areas, the projected hydrological changes under RCP8.5 go together with more loss in the snowpack (75–85%) and a temporal shift in the center timing of runoff to earlier dates (up to 5 weeks by the end of the century). The severity and frequency of extreme hydroclimatic events are also projected to increase in the future. The occurrence of extended droughts, such as the recently experienced mega-drought (2010–2015), increases from one to up to five events per 100 years under RCP8.5. Concurrently, probability density function of 3-day peak runoff indicates an increase in the frequency of flood events. The estimated return periods of 3-day peak runoff events depict more drastic changes and increase in the flood risk as higher recurrence intervals are considered by mid-century under RCP2.6 and RCP8.5, and by the end of the century under RCP8.5.  相似文献   

16.
There is considerable research interest in future agro-drought risk assessment, since the increasing severity of climate change-related hazards poses a great threat to global food security. Wheat is the most important staple crop in the world, and China’s wheat production has long been impacted by drought. The frequency, intensity, and duration of droughts may increase due to climate change and stressing the need for robust assessment methods for drought risk, as well as adaptation and mitigation strategies. This paper investigates a method for assessing future wheat drought risk using climate scenarios and a crop model. We illustrate the utility of such an approach by assessing the risk of wheat drought under climate change scenarios in China using the Environmental Policy Integrated Climate model. Results show that the risk level of wheat drought is highest under scenario RCP8.5, followed by RCP4.5, RCP6.0, and RCP2.6, in descending order. If current climate change trends continue, wheat drought risk in China will be at risk levels between RCP6.0 and RCP8.5 by the end of the twenty-first century. The wheat drought risk assessment shows a “low-risk, high-risk, low-risk” spatial pattern starting in the spring wheat-planting regions in northern China and progressing to the winter wheat-planting regions in southern China. Significant differences were observed across regions, but in all RCP scenarios, the relative high-risk zones are the Huang-Huai Winter Wheat Region and the North Winter Wheat Region. In addition, wheat drought risk mitigation and adaptation strategies in China are proposed.  相似文献   

17.
西南地区持续性气候事件的未来变化预估   总被引:1,自引:0,他引:1  
利用RegCM4.0区域气候模式单向嵌套BCC_CSM1.1模式输出资料进行连续积分获得的模拟预估数据,对西南地区未来2025-2055年在两种温室气体排放情景下持续性干期和持续湿期事件的特征及其相对于历史基准期的变化进行了预估分析。结果表明,最长持续干期和湿期在RCP4.5和RCP8.5两种情景下的变化趋势不一致,RCP8.5情景下的最长湿期和持续湿期事件的发生频次相较RCP4.5并没有大幅增加,而是比RCP4.5情景具有更高的年际变率特征。相对于历史基准期,两种情景下的最长持续性气候事件的日数和发生频次在西南地区的东南部区域显著性增加,而在川西高原地区显著减少。对于持续干期发生的频次FCDD和最长持续湿期而言,四川中部以及四川、云南和贵州三省邻接处在RCP4.5情景下表现为显著增加的区域在RCP8.5情景下转变为显著减少。未来几十年西南地区持续性湿期和干期的分布特征可能更加趋于不均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号