首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
崩岗集中发育在我国广东、福建等东南7省(自治区),面积约5万km2,是华南地区土壤侵蚀最严重的区域.崩岗是水力—重力复合侵蚀交替作用的产物,也是沟谷侵蚀发展的结果.崩岗主要发育在花岗岩厚层风化壳上,崩岗土体以高黏粒、低砾石含量的粗砂土为基本特征.崩岗崩积锥土体粒径自坡顶至坡脚由粗变细,反映出坡面流水的侵蚀和搬运过程.崩岗土体可蚀性强,可蚀性因子K值平均为0.26,比花岗岩红壤地区的平均K值高0.03 ~ 0.05.崩积锥坡脚K值大于坡顶,即坡脚可蚀性大于坡顶.崩岗崩壁和崩积锥土体的平均黏粒含量为10.13%,大于5%这一泥石流形成的必要条件.崩岗流域地形陡峻,一旦遭遇强降雨,有条件转化成“泥石流”.崩岗形成的“泥石流”平均中值粒径仅为常规泥石流的1/12,砾石含量仅为1/4.因此,崩岗型泥石流(即由崩岗转化成的“泥石流”)并不是通常意义上的泥石流,是广义泥石流大类中的一个新种——泥砂流.  相似文献   

2.
以北京市延庆地区南湾道豁子泥石流沟为研究对象,通过野外泥石流沟精细调查及历史资料统计,详细了解该泥石流发育特征和形成条件,针对流域内松散堆积物补给条件进行重点分析;综合研究该泥石流的动力学特征,进行泥石流危险区预测评价,提出相应的防治措施建议。研究结果表明:该泥石流沟内松散堆积物动储量为18.47×104 m3,分为冲洪积、残坡积、人工堆积和崩滑塌等4种补给来源,其中冲洪积和残坡积所占比重最大;泥石流发展阶段处于衰退期;经动力学分析,洪峰流量值在10年一遇的降雨条件下为52.53 m3/s,20年一遇的降雨条件下为59.25 m3/s,50年一遇的降雨条件下为68.13 m3/s,100年一遇的降雨条件下为74.85 m3/s,对应的一次固体冲出总量分别为0.77×104 m3、0.87×104 m3、1.00×104 m3和1.10×104 m3;属于中型泥石流,最大危险区面积为0.238 3 km2。通过评价分析,该泥石流沟仍存在爆发中型泥石流的可能性,将对下游南湾村以及千沙公路行车和行人的生命财产安全造成威胁。研究成果可为延庆地区该类泥石流单沟预警模型研究和灾害防治提供科学依据。  相似文献   

3.
为了探究泥石流的堆积范围,利用LAHARZ软件,对北京市密云县泥石流沟喇嘛栅子南沟进行了数值模拟。结合泥石流沟小流域1:10 000数字高程模型图,模拟了泥石流的堆积范围。首先利用中国部分地区泥石流体积和堆积范围的数据资料,获得了泥石流体体积与其堆积范围的新的统计模型B=11.42V0.7156;然后通过模拟沟道与实际沟道的对比,确定了最佳沟道阈值为15 000;再结合现场调查统计和降雨历史资料,确定了10年、20年、50年和100年一遇暴雨条件的泥石流体积值,分别为56 500、72 900、94 200和113 100 m3;最后在此基础上对该条泥石流沟的堆积范围进行了预测。结果表明,100年一遇的暴雨条件下泥石流堆积面积为48 729 m2,到达最远距离约为490 m,已影响下游村庄。  相似文献   

4.
汶川地震后,板子沟曾发生过多次大规模泥石流,尤其是2019年“8·20”泥石流对沟口的道路桥梁以及村寨造成了严重的破坏,将主河道向对岸严重挤压,今后仍存在较大堵河的风险。文章在野外调查以及对泥石流基本特征和形成条件综合分析的基础上,分析了堵河特征,计算了不同频率下泥石流的堵河参数,并预测了各频率下溃决洪水对绵虒镇可能产生的影响。计算结果表明,频率为2%、5%和10%的泥石流造成岷江堵塞的可能性较小,假设发生堵河事件,绵虒镇也不会受到溃坝洪水的危害。频率为1%的泥石流很可能造成主河堵塞。体积约57.38×104 m3的泥石流物质可以到达岷江,形成高度约为51.61 m的堰塞坝。在主河洪水的作用下,堰塞坝发生溃坝,溃坝洪水的峰值流量为5 935.49 m3/s,到达绵虒镇后降至2 312.25 m3/s。由于相应的洪水深度(4.00 m)大于防护堤的高度(3.50 m),因此溃坝洪水很可能会对绵虒镇防护堤附近民房造成破坏。为今后大型泥石流堵河特征的分析,以及溃决洪水对下游城镇可能造成的影响提供了参考。  相似文献   

5.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   

6.
The complexity of flow and wide variety of depositional processes operating in subaqueous density flows, combined with post‐depositional consolidation and soft‐sediment deformation, often make it difficult to interpret the characteristics of the original flow from the sedimentary record. This has led to considerable confusion of nomenclature in the literature. This paper attempts to clarify this situation by presenting a simple classification of sedimentary density flows, based on physical flow properties and grain‐support mechanisms, and briefly discusses the likely characteristics of the deposited sediments. Cohesive flows are commonly referred to as debris flows and mud flows and defined on the basis of sediment characteristics. The boundary between cohesive and non‐cohesive density flows (frictional flows) is poorly constrained, but dimensionless numbers may be of use to define flow thresholds. Frictional flows include a continuous series from sediment slides to turbidity currents. Subdivision of these flows is made on the basis of the dominant particle‐support mechanisms, which include matrix strength (in cohesive flows), buoyancy, pore pressure, grain‐to‐grain interaction (causing dispersive pressure), Reynolds stresses (turbulence) and bed support (particles moved on the stationary bed). The dominant particle‐support mechanism depends upon flow conditions, particle concentration, grain‐size distribution and particle type. In hyperconcentrated density flows, very high sediment concentrations (>25 volume%) make particle interactions of major importance. The difference between hyperconcentrated density flows and cohesive flows is that the former are friction dominated. With decreasing sediment concentration, vertical particle sorting can result from differential settling, and flows in which this can occur are termed concentrated density flows. The boundary between hyperconcentrated and concentrated density flows is defined by a change in particle behaviour, such that denser or larger grains are no longer fully supported by grain interaction, thus allowing coarse‐grain tail (or dense‐grain tail) normal grading. The concentration at which this change occurs depends on particle size, sorting, composition and relative density, so that a single threshold concentration cannot be defined. Concentrated density flows may be highly erosive and subsequently deposit complete or incomplete Lowe and Bouma sequences. Conversely, hydroplaning at the base of debris flows, and possibly also in some hyperconcentrated flows, may reduce the fluid drag, thus allowing high flow velocities while preventing large‐scale erosion. Flows with concentrations <9% by volume are true turbidity flows (sensu 4 ), in which fluid turbulence is the main particle‐support mechanism. Turbidity flows and concentrated density flows can be subdivided on the basis of flow duration into instantaneous surges, longer duration surge‐like flows and quasi‐steady currents. Flow duration is shown to control the nature of the resulting deposits. Surge‐like turbidity currents tend to produce classical Bouma sequences, whose nature at any one site depends on factors such as flow size, sediment type and proximity to source. In contrast, quasi‐steady turbidity currents, generated by hyperpycnal river effluent, can deposit coarsening‐up units capped by fining‐up units (because of waxing and waning conditions respectively) and may also include thick units of uniform character (resulting from prolonged periods of near‐steady conditions). Any flow type may progressively change character along the transport path, with transformation primarily resulting from reductions in sediment concentration through progressive entrainment of surrounding fluid and/or sediment deposition. The rate of fluid entrainment, and consequently flow transformation, is dependent on factors including slope gradient, lateral confinement, bed roughness, flow thickness and water depth. Flows with high and low sediment concentrations may co‐exist in one transport event because of downflow transformations, flow stratification or shear layer development of the mixing interface with the overlying water (mixing cloud formation). Deposits of an individual flow event at one site may therefore form from a succession of different flow types, and this introduces considerable complexity into classifying the flow event or component flow types from the deposits.  相似文献   

7.
吴雨夫  余斌  亓星  褚胜名  李丽 《现代地质》2012,26(1):107-113
大白杨沟流域位于岷江上游四川省茂县境内,处于叠溪镇较场山字型构造北端。该沟曾于1935年和1991年暴发过两次较大规模泥石流灾害,其中1935年暴发的泥石流受1933年叠溪7.5级地震影响,规模很大,其泥石流峰值流量达到557 m3/s。通过对大白杨沟流域两条支沟(小沟、大沟)的地形条件、水源条件及物源条件的特征分析,得出两条支沟具有形成泥石流的充分条件:(1)大沟沟道平均纵比降275‰,小沟为398‰,相对高差达2 023 m;(2)大沟拥有的物源总量为29.21万m3,小沟达到42.01万m3,物源丰富。这些条件很好地解释了小沟泥石流的强活动性。对后期泥石流的形成机制进行分析,大沟以"消防水管效应"形成泥石流为主,小沟则以"消防水管效应"和堰塞体溃决两种方式形成泥石流。最后,通过泥痕法还原了历史泥石流流量,并对后期泥石流流量做了较合理的预测,为大白杨沟泥石流灾害防治提供可靠的数据。  相似文献   

8.
在滨浅海沉积环境中有一类特殊的重力流水道沉积,名为泥流沟谷(mud flow gully)。泥流沟谷以泥岩充填为主,呈正韵律,厚度中等,往往切割其下部的砂体。在垂向上表现为泥流沟谷之下多为临滨或滨外的砂坝与滩砂,其上多为滨外泥沉积。泥流沟谷主要形成于滨浅海地形转折之处,由于构造事件的影响,导致塑性的尚未固结成岩的泥质沉积产生滑动,形成一种形态上类似下切河道的沟谷,在地形平缓之处,这些泥流又发生汇聚形成前端连片分布的特征。按泥流冲沟切割砂体的规模,可细分为“深”、“中”、“浅”三种类型,其中“深沟谷”表现为“深而宽”的特征,发育在地形坡折带,下切程度强;而“浅沟谷”呈现“浅而窄”的特点,发育在地形上游平缓带,下切程度弱;“中沟谷”下切深度介于“深”、“浅”两种沟谷之间,下切程度中等。泥流沟谷是储集砂体的侧向渗流屏障,浅沟谷往往分布在砂体中心部位,深沟谷分布在砂体边缘,中沟谷处于二者之间。受泥流沟谷的影响,砂坝砂体呈孤立状分布,同时由于夹层的影响使得砂体横向及垂向连续性与连通性变差。  相似文献   

9.
霍欣 《现代地质》2021,35(1):83-91
针对藏东南地区普遍发育的泥石流灾害影响川藏铁路车站选址的情况,通过实地调查并结合遥感解译,在查明察达泥石流区域现状的基础上,从泥石流的物质来源、诱发因素、动力因素等成灾条件分析泥石流的形成机理,并计算泥石流的动力学参数。藏东南察达泥石流沟口处的流速为7.63 m/s,静储量及动储量分别为1 519.81万m 3、38.08万m 3,泥石流危险度为中度危险级别,综合确定泥石流为大型-黏性-暴雨型-沟谷型-发展期-中等易发-中度危险泥石流。鉴于察达泥石流直接影响川藏铁路洛隆车站站址安全,为选择合适的线路方案,考虑桥梁和隧道两种不同的工程设置,在穿越泥石流处比选了4种方案;比选结果表明桥梁工程的DK方案桥面不存在淤埋风险,局部或全部堵塞桥涵孔径的风险较低,并便于修建排导槽等防护工程,泥石流引发的风险可控,为最优方案。研究成果可为该地区相似条件下铁路车站站址的选择提供借鉴。  相似文献   

10.
坡面泥石流具有规模小、分布广、暴发突然、流动快、过程短、冲击力大等特征,是一种危害十分严重的自然灾害。为了查明西藏日喀则市谢通门县尼玛弄自然村坡面泥石流的发育特征,以野外精细化调查和测量为工作方法,在查明泥石流区域地质环境及分区特征、主沟支沟的沟道特征、形成条件、物源转化关系的基础上,综合研判泥石流的发展趋势并划定了危险区范围。结果表明: 流域内松散固体物源总量约为22.72×104 m3,可能参与泥石流活动的动储量约为7.82×104 m3; 坡面泥石流一旦遭遇大暴雨,势必引发较大规模的泥石流灾害; 泥石流的综合致灾能力较强,受灾体的抗灾能力较弱,泥石流治理紧迫性等级为I级; 提出“导流槽+截流槽+导流堤”和“导流防护堤”两种工程治理方案,为该区泥石流防治工作提供参考。  相似文献   

11.
受“5.12”地震影响.汶川境内中高山峡谷地区众多流域内诱发了岩体崩塌及浅表土层滑坡.松散固体物源大量增加,为泥石流的形成创造了条件,从而使地震灾区泥石流沟暴发频率已较震前有显著提高。通过对新桥沟泥石流的流域、水源和物源特征的分析,认为该泥石流沟地形起伏大、水源充沛、物源发育等条件,暴发泥石流的的可能性较大。通过现场的物源分布情况,为在投资预算范围内取得最大的拦砂经济效益比,分别在流域内中下游、中游、中上游及上游设置4拦挡坝,以及修建排导槽工程,为有效预防泥石流提供了保障。  相似文献   

12.
地震或强降雨诱发滑坡,滑坡体碰撞解体形成碎屑物质堆积在沟道内,在后期降雨作用下形成泥石流,这是泥石流形成的一种方式,可称为滑坡碎屑堆积体泥石流。笔者分析了影响碎屑堆积体泥石流起动的特征参数,通过实验研究了碎屑堆积体泥石流形成的过程,分析了堆积体表面坡度、黏粒质量分数、中值粒径(d50)以及不均匀系数(Cu)对泥石流形成的影响。结果表明:碎屑堆积体表面坡度对形成泥石流所需单宽流量无明显影响;黏粒质量分数在不大于5%时仅影响碎屑堆积体侵蚀,对碎屑堆积体揭底所需单宽流量无明显影响;影响碎屑堆积体形成泥石流所需单宽流量的因素主要为中值粒径和不均匀系数--随堆积体中值粒径、不均匀系数的增大而增大。通过实验数据拟合得出了中值粒径和不均匀系数与泥石流形成和揭底所需单宽流量的公式;由于公式中只考虑了影响碎屑堆积体形成泥石流的两个主要因素(d50Cu),因此对比水文计算结果偏小,但整体趋势基本一致。在实际应用到这类泥石流沟时,可通过修正进行预测。  相似文献   

13.
2020年6月17日,四川丹巴县半扇门镇梅龙沟发生泥石流,阻断小金川河,形成堰塞湖,造成重大财产损失与人员伤亡。为掌握第一手灾情,辅助开展应急救援,以国产高分二号卫星数据为主要数据源,结合无人机航空摄影数据和灾后现场调查等资料,开展了“6·17”丹巴堵江泥石流灾害链灾区应急调查与分析。研究认为: 灾区影响人口约6.5万人; 国网丹巴县供电公司应急救援队与小金县联通通信应急抢险救援队距离最近,半扇门中学等5所学校可作为临时安置避难场所备选; 受影响矿山企业6家、重要水库1座、水电站1座; 泥石流沟总体呈NW—SE向展布,掩没面积约14.27万m2; 堰塞湖湖面面积约1.03 km2,淹没区约49.8万m2,路基路面全毁路段约2.1 km,下游疑似灾害隐患点9处,因灾受损民居25处、桥梁5处; 优选了2条灾后通达性较好的通往泥石流重灾区的救援生命线。借助遥感技术深入分析泥石流灾害链影响人口等灾情先期研判、灾情灾损应急调查及应急救援生命通道优选,对我国西南山区类似条件地质灾害隐患点的应急抢险救援、防灾减灾工作具有重要的指导意义。  相似文献   

14.
祝恩珍  韩帅  孙萍  王刚 《现代地质》2019,33(1):227-234
以天水地区渭河南岸大砂沟泥石流沟为研究对象,通过野外地质调查以及历史资料的统计,初步了解该泥石流的形成条件、松散物源的补给条件、活动历史;详细研究了该泥石流的运动特征,并提出了相应的治理措施。结果表明:该泥石流沟上游三面不稳定斜坡体上的堆积物和大砂沟沟道内的松散堆积物为该泥石流的主要物源;通过统计分析,在极端降雨天气条件下计算得到洪峰流量为355. 26 m3/s。该泥石流沟仍存在暴发大规模泥石流的可能性,一旦泥石流发生,将对下游甘谷县城居民的生命财产安全造成严重的威胁。研究成果可为天水地区泥石流的防灾减灾提供科学依据。  相似文献   

15.
On June 17, 2020, a mudslide occurred in Meilongou of Banshanmen Town, Danba County of Sichuan Province, which blocked Xiaojinchuan River and formed a barrier lake, causing heavy property losses and casualties. In order to grasp the first-hand disaster situation and assist emergency rescue and other disposals, combined with the UAV aerial photography data and post-disaster site survey and other data, the authors used the domestic high-score 2 satellite data as the main data source to carry out the emergency investigation and analytical research of emergency rescue decision about “6.17” Danba River debris flow disaster chain. The results show that the affected population is about 65,000 and the nearest emergency rescue teams are from State Grid Danba County Power Supply Company and China Unicom of Xiaojin Country. Five schools, such as Banshanmen middle school, could be used as temporary resettlement shelters. There are six mining enterprises, one important reservoir and one hydropower station affected by the disaster. The debris flow gully is NE—SE distributed, covering about 142,700 m2. And the barrier lake is about 1.03 km2, covering 498,000 m2. The totally destroyed roadbed and road surface were about 2.1 km and there are 9 suspected disaster hidden dangers in the lower reach. Whats more, 25 residential houses and 5 bridges were damaged by the disaster. Two rescue lifelines with good post-disaster accessibility to the severely affected debris flow areas were chosen. With the help of remote sensing technology, the in-depth analysis of the pre-judgment of the affected population by the debris flow disaster chain, emergency investigation of the disaster situation and disaster damage, and the selection of emergency rescue lifelines were successfully conducted, which has great guiding significance in the emergency rescue and disaster prevention and mitigation in the mountainous areas of Southwest China with similar geological conditions.  相似文献   

16.
沉积物重力流流体转化沉积-混合事件层   总被引:3,自引:2,他引:1  
随着浊流和碎屑流理论体系日臻成熟,重力流的流体转化过程逐渐受到重视,而与其相关联的混合事件层概念也应运而生。混合事件层是单次碎屑流或浊流流体转化中的沉积记录,是多种流变学特征的垂向沉积组合。典型混合事件层沉积序列具有五段式的特征(即纯净砂岩段H1、条带状砂岩段H2、黏性碎积岩段H3、波状层理段H4、块状泥岩段H5),其内部通常存在岩性突变界面。混合事件层发育于粗粒三角洲内部、海底扇和水道与舌状体过渡区、舌状体侧缘、远端及限制性的微型盆地边缘地区,其垂向叠置厚度可达数十米。混合事件层的发现对重力流流体转化、重力流沉积物空间流变学性质研究具有重要意义,同时也推动了油气储层构型和非均质性研究,为进一步寻找深水有利储集砂体提供了新思路。混合层地球物理识别方法的建立及其相关概念在湖泊重力流研究中的灵活应用将是下一步的研究方向。  相似文献   

17.
通过岩芯观测、地震解释和测井分析,结合薄片观察、粒度分析以及各种资料的综合分析,对鄂尔多斯盆地南部富县地区上三叠统延长组沉积相类型及特征进行深入研究,提出长9-长6油层组存在砂质碎屑流沉积。结合盆地沉积背景及其演化规律,探讨了砂质碎屑流沉积的成因机制, 详细论述了砂质碎屑流沉积的沉积特征,建立了砂质碎屑流的沉积模式。研究表明砂质碎屑流砂体主要由块状粉细砂岩和含泥砾粉细砂岩两种成因相构成,其成因是三角洲前缘砂体在外界触发力作用下,滑动崩塌而形成。分析了砂质碎屑流沉积与油气的分布关系,实践表明砂质碎屑流沉积体是下生上储或下储上生的油藏类型,属于典型的岩性油气藏,构成了该区深水区域的良好岩性圈闭储集体。  相似文献   

18.
在对甘肃省舟曲县“8.8”特大泥石流调查的基础上,分析计算了三眼峪泥石流的静力学和动力学特征值。三眼峪泥石流重度介于2.O~2.15t/m^3之间,属于黏性泥石流;支沟大眼峪和小眼峪坡降大,谷底窄,泥石流流速比主沟流速大,最大流速达9.2m/s,流通区积蓄能量巨大;主沟最大流量位于大眼峪沟与小眼峪沟交汇处(峪门口),流量达1830m^3/s,一次最大冲出量为152×10^4m^3,泥石流规模为特大型;三眼峪沟泥石流冲压力最大为小眼峪沟沟口断面处,冲击力为245kPa;实测泥石流堆积扇中石块最大粒径为11.2m,计算三眼峪沟泥石流中石块最大运动速度达15.06m/s。特征值分析结果可为舟曲泥石流灾后重建过程中工程设计提供重要依据。  相似文献   

19.
Settling velocities and entrainment thresholds of biogenic sedimentary particles, under unidirectional flow conditions, are derived on the basis of settling tower and laboratory flume experiments. Material consisting predominantly of equant blocks (shell fragments of Cerastoderma edule , density, ρ s=2800 kg m−3) or of mica-like flakes and elongate rods ( Mytilus edulis fragments, ρ s=2720 kg m−3) are used in separate series of experiments. Differences in the measured settling and threshold properties are related primarily to particle shape. The selection of a characteristic length scale for non-spherical grains is investigated by comparing two approaches used to define the grain size ( D ) of the sediment samples: grain settling and sieve analysis that are used to derive data for the threshold criteria, in terms of the Shields and Movability diagrams. The empirical curves effectively predict the threshold conditions for any grain shape, provided that grain size is defined in terms of grain settling velocity. However, a functional distinction is made between the characteristic `hydraulic' grain size, defined by grain settling for grain transport applications, and the actual (physical) grain size defined by sieve analysis.  相似文献   

20.
四川凉山州美姑县61泥石流灾害研究   总被引:1,自引:2,他引:1  
四川凉山州美姑县6.1泥石流灾害实例研究表明,该泥石流约为20年一遇的中小规模的泥石流。流域上游短历时强降雨和冰雹天气过程是这次泥石流暴发的诱因,流域内退化的生态环境和中下两岸不稳定边坡以及沟道内大量的松散堆积物为这次泥石流提供了丰富的固体物质来源。泥石流堆积物具有典型的多峰型粒度特征,且有较高的粘粒含量。巨大的泥石流漂砾、石背石现象、龟裂现象、侧积堤和龙头堆积证实了这次泥石流为粘性泥石流。危险度评价表明,采莫洛沟属于高度危险的泥石流沟,危险度为0.67;乃托沟属于中度危险的泥石流沟,危险度为0.58。风险评估结果可知,两沟都属于泥石流高风险区风险度分别为0.52和0.45。高风险区的泥石流灾害给当地的经济社会造成了严重影响并直接造成了较大的人员伤亡和财产损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号