首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The “Fast X-ray Monitor” (BRM) instrument operated in the complex of the scientific instruments onboard the CORONAS-PHOTON satellite from February 19, 2009, until December 1, 2009. The instrument is intended for the registration of the hard X-ray radiation of solar flares in the 20–600 keV energy range in six differential energy channels (20–30, 30–40, 40–50, 50–70, 70–130, and 130–600 keV) with temporal resolution to 1 ms. In the instrument, a detector based on the YAP: Ce scintillator is used; this detector is 70 mm in diameter and 10 mm thick (the decay time is about 28 ns). For the decrease of the back-ground charge of the detector, the collimator limiting the angle of view of the instrument of value 12° is mounted over the scintillator. The effective area of the detector amounts to 27.7 cm2 (at the X-ray radiation energy 80 keV), and the dead time of the detector is 1 μs. Over the operation onboard the CORONAS-PHOTON satellite, the BRM instrument has registered gamma ray burst series and, perhaps, one solar flare of the class C1.3 on October 26, 2009.  相似文献   

2.
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen’s University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k × 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 – 15 e s−1 pixel−1), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.  相似文献   

3.
4.
The NATALYA-2M high-energy radiation spectrometer is an element of the complex of scientific equipment of the CORONAS-PHOTON satellite. The instrument intended for registering gamma radiation of solar flares in the broad energy range of 0.2–1600 MeV as well as neutrons of solar origin with energies of 20–300 MeV represents itself as a scintillation spectrometer based on CsI(Tl) crystals with a total area of 32 × 38 cm2 and the thickness of 18 cm. The spectra and time profiles of the gamma quanta count rates are measured in four subranges: R (0.2–2 MeV), L (1–18 MeV), M (7–250 MeV), and H (50–1600 MeV). Depending on the gamma radiation energy, the effective area of the instrument varies within the range from 750 to 900 cm2, and the energy resolution at the Cs-137 line (662 keV) is 10%, it being about 30% at energies higher than 50 MeV. A system of stabilization based on the signal from the generator of reference light pulses is used to provide stability and automated adjustment of the parameters of spectrometric modules. The measuring channels of the instrument are calibrated during the flight using a source of “tagged” gamma quanta on the Co-60 radioactive isotope. Polystyrene scintillation counters are used to provide protection from the background of charged particles. The “CORONAS-PHOTON” spacecraft (SC) was launched from the Plesetsk spaceport on January 30, 2009, to a low circular near-Earth orbit (the altitude is 550 km, the inclination is 82.5°). On February 27, the first scientific data were obtained from the NATALYA-2M instrument. The results of the flight calibration of the instrument detectors in different energy channels demonstrated good agreement with the ground measurements. The paper describes the instrument and observational potentials of the NATALYA-2M spectrometer, gives the results of the adjustment and calibration, and exemplifies the registration of gamma-ray bursts (GRBs)on the orbit.  相似文献   

5.
The primordial anisotropy polarization pathfinder array (PAPPA) is a balloon-based instrument to measure the polarization of the cosmic microwave background and search for the signal from gravity waves excited during an inflationary epoch in the early universe. PAPPA will survey a 20° × 20° patch at the North Celestial Pole using 32 pixels in 3 passbands centered at 89, 212, and 302 GHz. Each pixel uses MEMS switches in a superconducting microstrip transmission line to combine the phase modulation techniques used in radio astronomy with the sensitivity of transition-edge superconducting bolometers. Each switched circuit modulates the incident polarization on a single detector, allowing nearly instantaneous characterization of the Stokes I, Q, and U parameters. We describe the instrument design and status.  相似文献   

6.
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv?=?9–12 and to see contrasts of the order of 10?4–10?5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4–2.5 μm spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4–1.0 μm and 1.0–2.5 μm spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 μm pitch and working at a temperature of 45 K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.  相似文献   

7.
The GraF instrument using a Fabry-Perot interferometer cross-dispersed with a grating was one of the first integral-field and long-slit spectrographs built for and used with an adaptive optics system. We describe its concept, design, optimal observational procedures and the measured performances. The instrument was used in 1997–2001 at the ESO3.6 m telescope equipped with ADONIS adaptive optics and SHARPII+camera. The operating spectral range was 1.2–2.5 μm. We used the spectral resolution from 500 to 10 000 combined with the angular resolution of 0.1″–0.2″. The quality of GraF data is illustrated by the integral field spectroscopy of the complex0.9″ × 0.9″ central region of η Car in the1.7 μm spectral range at the limit of spectral and angular resolutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The Spectral Irradiance Monitor (SIM) is a dual Fèry prism spectrometer that employs 5 detectors per spectrometer channel to cover the wavelength range from 200 to 2700 nm. This instrument is used to monitor solar spectral variability throughout this wavelength region. Two identical, mirror-image, channels are used for redundancy and in-flight measurement of prism degradation. The primary detector for this instrument is an electrical substitution radiometer (ESR) designed to measure power levels ∼1000 times smaller than other radiometers used to measure TSI. The four complementary focal plane photodiodes are used in a fast-scan mode to acquire the solar spectrum, and the ESR calibrates their radiant sensitivity. Wavelength control is achieved by using a closed loop servo system that employs a linear charge coupled device (CCD) in the focal plane. This achieves 0.67 arcsec control of the prism rotation angle; this is equivalent to a wavelength positioning error of δλ/λ = 150 parts per million (ppm). This paper will describe the scientific measurement requirements used for instrument design and implementation, instrument performance, and the in-flight instrument operation modes.  相似文献   

9.
For observations of solar system objects an imaging polarimeter has been constructed as an auxiliary instrument for a f/15 focal reducer. With this instrument simultaneous measurement of theQ andU Stokes parameters is possible. It contains no moving parts such as a moving /2 retarder. The polarizer consists of two Wollaston prisms which are combined to form a single optical element. Their polarization angles differ by 45°. This compound polarizer is placed in the exit pupil of the afocal telescope-collimator system of the focal reducer and splits the exit pupil into halves. In this way four polarized beams with E-vector orientations 0°, 90°, 45°, and 135° emerge from the exit pupil. These are intercepted by the camera lens of the focal reducer system and imaged simultaneously on the CCD detector. With a properly designed field mask at the Cassegrain focus, the four beams are imaged without overlap.As a demonstration of the capabilities of this quadruple-beam Wollaston-prism polarimeter, we present observations of comet Tanaka-Machholz 1992 X in May 1992. The advantages, shortcomings, and possible improvements of the instrument are discussed.based on observations obtained at Hoher List Observatorypresently at Astronomical Observatory of Khar'kiv University, Sumskaya Street 35, 310022 Khar'kiv, Ukraine  相似文献   

10.
11.
A multiple pinhole camera system has been designed and proposed for a small satellite of the SAS type for the detection and localization of gamma-ray bursts. The instrument consists of a three unit array of detectors each of which includes a semi-cylindrical collimator surrounding a twodimensional position-sensitive detector. The collimator contains slits of 1 mm width that are cut parallel to the axis of the cylinder. The slits are randomly arranged in azimuth around the cylinder. X-rays may enter the counter through several surfaces. The point at which photoelectric interaction takes place is determined in two dimensions in a plane perpendicular to the cylinder axis. Each unit of the system determines the position of a burst to a great circle. An intersection of two (or three) great circles provides the precise positions.The field of view of the instrument is 2.7 ster, essentially the entire region of sky not occulted by the Earth. It is designed to operate in the energy range 20–100 keV. An instrument sized to fit a SAS spacecraft has a sensitivity of better than 10–6 erg cm–2 for bursts whose intense phases occur in less than a total of three seconds. For stronger bursts (>10–5 erg cm–2) the location precision is better than a minute of arc.Paper presented at the COSPAR Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

12.
A new digital radio spectrograph, the Madurai Solar Radio Spectrograph (MSRS), has been constructed at Madurai Kamaraj University, Madurai, India, and is being operated at the Radio Astronomy Centre, Ooty in southern India to observe solar bursts in the frequency range 30–80 MHz. The operation of the new instrument is briefly described. Observations of solar bursts by this instrument and the results from the preliminary analysis are presented.  相似文献   

13.
14.
Well-resolved Raman spectra of examples of nitrogen-containing compounds were detected using a portable Raman instrument (Ahura First Defender XL) outdoors at a low temperature of −15 °C at an altitude of 2860 m (Pitztall, Austria). The portable Raman spectrometer tested here is equipped with a 785 nm diode laser and fixed frontal probe. Solid forms of formamide, urea, 3-methylpyridine, aniline, indene, 1-(2-aminoethyl)piperazine, benzofuran and indoline were detected unambiguously under field high-mountain conditions. The main Raman features (strong, medium and partially weak bands) were observed at their correct wavenumber positions (spectral resolution 7-10 cm−1) in the range 200-2000 cm−1. The results obtained demonstrate the possibility of applying a miniaturised Raman spectrometer as key instrument for investigating the presence of nitrogen-containing organic compounds and biomolecules under low temperature field conditions. Within the payload designed by ESA and NASA for future missions focusing not only on Mars, Raman spectroscopy will be an important non-destructive analytical tool for the in-situ identification of both organic and inorganic compounds relevant to life detection on planetary surfaces or near sub-surfaces.  相似文献   

15.
The CORONAS-PHOTON Russian satellite intended to study the Sun was successfully launched into orbit on January 30, 2009. Scientific equipment of the satellite includes the PHOKA radiometer of soft X-ray and extreme UV radiation. The PHOKA instrument is intended to measure the absolute flux of solar electromagnetic radiation in the spectral windows of 0.5–7 nm, 0.5–11 nm, 27–37 nm, and 116–125 nm. When leaving and entering the Earth’s shadow, the instrument aboard the spacecraft measures absorption of radiation by various layers of the Earth’s atmosphere. Before the launch, photodiodes of the instrument had been calibrated using a synchrotron radiation source. In-flight stability of sensitivity of main channels is controlled using calibration channels. The paper describes the PHOKA instrument and presents its capabilities and main characteristics, as well as some results of its operation in orbit.  相似文献   

16.
F. Cavallini 《Solar physics》2006,236(2):415-439
A new instrument for solar bi-dimensional spectroscopy, the Interferometric BIdimensional Spectrometer (IBIS), has been successfully installed at the Dunn Solar Telescope of the National Solar Observatory (USA-NM) in June 2003. This instrument is essentially composed of a series of two Fabry-Perot interferometers and a set of narrow-band interference filters, used in a classic mount and in axial-mode. It has been designed to take monochromatic images of the solar surface with high spectral (R ≥ 200 000), spatial ≃ 0.2″), and temporal resolution (several frames s−1). IBIS has a circular field of view, 80″ in diameter and, with suitable interference filters, it can be used in the wavelength range 580 – 860 nm. The wavelength stability of the instrumental profile is very high, the maximum drift in 10 hours amounting to ≃10 m s−1. In this paper the criteria used in the design and the expected instrumental characteristics are described.  相似文献   

17.
This instrument, at the present time in development, will fly on board Spacelab I in May 1983. Other flights are foreseen during the following missions. This instrument is composed by three double monochromators covering the range 170 to 3200 nm. The spectrometers have band-passes of 1 nm up to 900 nm and 20 nm from 850 to 3200 nm with an accuracy 10–2 nm. Calibration lamps are included in the instrument to monitor any change of its sensitivity and wavelength scale.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.Institut d'Aéronomie Spatiale de Belgique, 3, avenue Circulaire-B1180 Bruxelles, Belgique.Landessternwarte-Koenigstuhl, D6900 Heidelberg, F.R.G.Hamburger Sternwarte, Gojenbergsweg, D2050 Hamburg 80, F.R.G.  相似文献   

18.
M.G. Tomasko  L.R. Doose  L.E. Dafoe  C. See 《Icarus》2009,204(1):271-283
The Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe into the atmosphere of Titan yielded information on the size, shape, optical properties, and vertical distribution of haze aerosols in the atmosphere of Titan [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., 2008. Planet. Space Sci. 56, 669-707] from photometric and spectroscopic measurements of sunlight in Titan’s atmosphere. This instrument also made measurements of the degree of linear polarization of sunlight in two spectral bands centered at 491 and 934 nm. Here we present the calibration and reduction of the polarization measurements and compare the polarization observations to models using fractal aggregate particles which have different sizes for the small dimension (monomer size) of which the aggregates are composed. We find that the Titan aerosols produce very large polarizations perpendicular to the scattering plane for scattering near 90° scattering angle. The size of the monomers is tightly constrained by the measurements to a radius of 0.04 ± 0.01 μm at altitudes from 150 km to the surface. The decrease in polarization with decreasing altitude observed in red and blue light is as expected by increasing dilution due to multiple scattering at decreasing altitudes. There is no indication of particles that produce small amounts of linear polarization at low altitudes.  相似文献   

19.
MIDI, the MID-Infrared Interferometricnterferometric Instrument for ESO's Very Large Telescope Interferometer (VLTI), will be the first instrument for combining mid-infrared light directly in order to obtain angular resolution up to 10 mas (assuming a 200 m baseline) in a wavelength range from 8 to 13 μm. Currently in the phase of commissioning at Paranal, the start of its scientific operation is expected for summer 2003. Direct interferometry at thermal infrared wavelengths demands special requirements on the instrument and also on the procedures of preparation of data reduction. Hereafter MIDI's different observing modes are described and an example for an interferometric observation is given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The apex-sz instrument is designed for the discovery and study of galaxy clusters at mm-wavelengths using the Sunyaev Zel’dovich effect. The receiver consists of 320 superconducting transition edge sensor (TES) bolometers cooled to 250 mK with the combination of a three stage He sorption fridge and mechanical pulse tube cooler. The detectors are instrumented with a frequency domain multiplexing readout system. The receiver is mounted on the 12 m apex telescope located at 5100 m on the Atacama plateau in Chile. For the first light engineering deployment of December 2005, the receiver was configured with a 55 element wedge of the bolometers and operating in the 150 GHz atmospheric window. During the engineering run we achieved significant milestones in our instrumentation development efforts, including celestial observations with a monolithically fabricated TES bolometer array cooled with a mechanical cooler and successful implementation of a SQUID-based MHz AC-biased readout. These technology demonstrations point the way toward future large TES bolometer array instruments. Here we describe the results of this deployment and future plans for the apex-sz instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号