首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a model that describes the evolution of distant satellite orbits and that refines the solution of the doubly averaged Hill problem. Generally speaking, such a refinement was performed previously by J. Kovalevsky and A.A. Orlov in terms of Zeipel’s method by constructing a solution of the third order with respect to the small parameter m, the ratio of the mean motions of the planet and the satellite. The analytical solution suggested here differs from the solutions obtained by these authors and is closest in form to the general solution of the doubly averaged problem (∼m 2). We have performed a qualitative analysis of the evolutionary equations and conditions for the intersection of satellite orbits with the surface of a spherical planet with a finite radius. Using the suggested solution, we have obtained improved analytical time dependences of the elements of evolving orbits for a number of distant satellites of giant planets compared to the solution of the doubly averaged Hill problem and, thus, achieved their better agreement with the results of our numerical integration of the rigorous equations of perturbed motion for satellites.  相似文献   

2.
We consider the particular solutions of the evolutionary system of equations in elements that correspond to planar and spatial circular orbits of the singly averaged Hill problem. We analyze the stability of planar and spatial circular orbits to inclination and eccentricity, respectively. We construct the instability regions of both particular solutions in the plane of parameters of the problem.  相似文献   

3.
Based on the ideas of Lyapunov’s method, we construct a family of symmetric periodic solutions of the Hill problem averaged over the motion of a zero-mass point (a satellite). The low eccentricity of the satellite orbit and the sine of its inclination to the plane of motion of the perturbing body are parameters of the family. We compare the analytical solution with numerical solutions of the averaged evolutionary system and the rigorous (nonaveraged) equations of the restricted circular three-body problem.  相似文献   

4.
We analyze the stability of periodic solutions for Hill’s double-averaged problem by taking into account a central planet’s oblateness. They are generated by steady-state solutions that are stable in the linear approximation. By numerically calculating the monodromy matrix of variational equations, we plot its trace against the integral of the problem—an averaged perturbing function, for two model systems, [(Sun + Moon)-Earth-satellite] and (Sun-Uranus-satellite). We roughly estimate the ranges of values for the parameters of satellite orbits corresponding to periodic solutions of the evolutionary system that are stable in the linear approximation.  相似文献   

5.
We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical ‘potential’ function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This paper investigates the stability of the motion in the averaged planar general three-body problem in the case of first-order resonance. The equations of the averaged motion of bodies near the resonance surface is obtained and is analytically integrated by quadratures. The stability of the averaged motion is analytically investigated in relation to the semi-major axes, the eccentricities and the resonance phases. An autonomous second-order equation is obtained for the deviation of semiaxes from the resonance surface. This equation has an energy integral and is analytically integrated by quadratures. The quasi-periodic dependence on time with two-frequency basis of the averaged motion of bodies is found. The basic frequencies are analytically calculated. With the help of the mean functionals calculated along integral curves of the averaged problem the new analytic first integrals are constructed with coefficients periodic in time. The analytic conditions of librations of resonance phases are obtained.  相似文献   

7.
We investigate the evolution of high Earth satellite orbits under gravitational perturbations from the Sun and light pressure forces, without the Earth shadow effect. We present the disturbing function of the problem provided that the satellite is a sphere. The mean value of the disturbing function in the absence of resonances between the mean unperturbed motion of the satellite and the mean motion of the Sun has also been obtained. The semimajor axis of the satellite orbit and the mean value of the disturbing function are shown to be integrals of the averaged osculating equations. TheHill version of the problem, whereby the distance to the satellite is much smaller than the Earth–Sun distance, has been studied in detail: we have constructed the phase portraits of the oscillations at various parameters and described three types of quasiperiodic satellite trajectories—librational and rotational trajectories as well as Earth collision trajectories. Numerical simulations of trajectories have allowed the additional effects caused by light pressure to be described: the displacement of the bounded trajectory of the satellite as a whole relative to the trajectory of the classical three-body problem into a region more distant from the Sun.  相似文献   

8.
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange’s planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting–Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.  相似文献   

9.
We derive a symplectic mapping model based on Hadjidemetriou’s method for the synchronous spin-orbit problem with and without the additional precession of the nodes. The mapping is derived from the averaged potential of the spin-orbit dynamical model and includes the main spin-orbit interactions, i.e. the non-zero obliquity and wobble motion of the rotating body. In addition the orbit of the perturbing body allows non-zero inclination and eccentricity. To obtain the equilibrium configuration we calculate the position and stability of the fixed points in the 1:1 spin-orbit resonance and relate them to the equilibria of the continuous system. We use the mapping equations to investigate the long-term stability close to the fixed point solutions of the mapping. We also apply the mapping method to the case of the moon Titan and validate the mapping approach by means of numerical integrations. The mapping model reproduces all the characteristics of Deprit’s model of free rotation as well as the dynamical features of Henrard’s averaged model of spin-orbit interaction with great precision.  相似文献   

10.
High-order analytical solutions of invariant manifolds, associated with Lissajous and halo orbits in the elliptic restricted three-body problem (ERTBP), are constructed in this paper. The equations of motion of ERTBP in the pulsating synodic coordinate system have five equilibrium points, and the three collinear libration points as well as the associated center manifolds are unstable. In our calculation, the general solutions of the invariant manifolds associated with Lissajous and halo orbits around collinear libration points are expressed as power series of five parameters: the orbital eccentricity, two amplitudes corresponding to the hyperbolic manifolds, and two amplitudes corresponding to the center manifolds. The analytical solutions up to arbitrary order are constructed by means of Lindstedt–Poincaré method, and then the center and invariant manifolds, transit and non-transit trajectories in ERTBP are all parameterized. Since the circular restricted three-body problem (CRTBP) is a particular case of ERTBP when the eccentricity is zero, the general solutions constructed in this paper can be reduced to describe the dynamics around the collinear libration points in CRTBP naturally. In order to check the validity of the series expansions constructed, the practical convergence of the series expansions up to different orders is studied.  相似文献   

11.
For the general spatial planetary three-body problem at first-order mean motion resonance under the large oblateness of the central planet, the analytic solutions of the averaged motion are obtained with the help of the Weierstrass functions accurate to the third-degree terms in the satellites' eccentricities and inclinations. The behavior of solutions is investigated on the phase plane.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.  相似文献   

13.
The first integrals of motion of the restricted planar circular problem of three bodies are constructed as the formal power series in r1/2, r being the distance of a moving particle from the primary. It is shown that the coefficients of these series are trigonometric polynomials of an angular variable. Some particular solutions have been found in a closed form. The proposed method for constructing the formal integrals can be generalized to a spatial problem of three bodies.  相似文献   

14.
A system of averaged equations of planetary motion around a central star is constructed. An astrocentric coordinate system is used. The two-planet problem is considered, but all constructions are easily generalized to an arbitrary number N of planets. The motion is investigated in modified (complex) Poincarécanonical elements. The averaging is performed by the Hori–Deprit method over the fast mean longitudes to the second order relative to the planetary masses. An expansion of the disturbing function is constructed using the Laplace coefficients. Some terms of the expansion of the disturbing function and the first terms of the expansion of the averaged Hamiltonian are given. The results of this paper can be used to investigate the evolution of orbits with moderate eccentricities and inclinations in various planetary systems.  相似文献   

15.
Based on data for twelve recently discovered outer satellites of Saturn, we investigate their orbital evolution on long time scales. For our analysis, we use the previously obtained general solution of Hill’s double-averaged problem, which was refined for libration orbits, and numerical integration of the averaged system of equations in elements with allowance for Saturn’s orbital evolution. The following basic quantitative parameters of evolving orbits are determined: extreme eccentricities and inclinations, as well as circulation periods of the pericenter arguments and of the longitudes of the ascending nodes. For four new satellite orbits, we have revealed the libration pattern of variations in pericenter arguments and determined the ranges and periods of their variations. Based on characteristic features of the orbits of Saturn’s new satellites, we propose their natural classification.  相似文献   

16.
17.
We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth’s satellites. We describe parameters of the motion model used for the artificial Earth’s satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.  相似文献   

18.
Using the famous Sundman inequality, we have constructed for the first time the surfaces for the general three-body problem that we suggest calling Sundman surfaces. These surfaces are a generalization of the widely known Hill surfaces in the restricted circular three-body problem. The Sundman surfaces are constructed in a rectangular coordinate system that uses the mutual distances between the bodies as the Cartesian rectangular coordinates. The singular points of the family of these surfaces have been determined. The possible and impossible regions of motion of the bodies have been constructed in the space of mutual distances. We have shown the existence of Hill stable motions and established sufficient criteria for Hill stability of motions. Some of the astronomical applications are considered.  相似文献   

19.
The problem of the spatial motion of a star inside an inhomogeneous rotating elliptical galaxy with a homothetic density distribution is considered. Periodic solutions are constructed by the method of a small Poincaré parameter. Linear variational equations with periodic coefficients are used to analyze the Lyapunov stability of these solutions.  相似文献   

20.
In this paper, we study chaos control of a class of fractional-order chaotic systems where the dynamic control system depends on the Caputo fractional derivatives. We first propose an infinite horizon optimal control problem related to the given fractional chaotic system. With the help of an approximation, we replace the Caputo derivative to integer order derivative. We then convert the obtained infinite horizon optimal control problem into an equivalent finite horizon one. Based on the Pontryagin minimum principle (PMP) for optimal control problems and by constructing an error function, we define an unconstrained minimization problem. In the optimization problem, we use trial solutions for state, costate and control functions where these trial solutions are constructed by using a two-layered perceptron neural network. A learning procedure of the proposed neural network with convergence properties are also given. Some numerical results are introduced to explain our main results. Three applicable examples on chaos control of Malkus waterwheel, finance fractional chaotic models and fractional-order Geomagnetic Field models are finally considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号