首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Coronal mass ejections (CMEs) are large-scale eruptive events in the solar corona. Once they are expelled into the interplanetary (IP) medium, they propagate outwards and “evolve” interacting with the solar wind. Fast CMEs associated with IP shocks are a critical subject for space weather investigations. We present an analytic model to study the heliocentric evolution of fast CME/shock events and their association with type II radio-burst emissions. The propagation model assumes an early stage where the CME acts as a piston driving a shock wave; beyond this point the CME decelerates, tending to match the ambient solar wind speed and its shock decays. We use the shock speed evolution to reproduce type II radio-burst emissions. We analyse four fast CME halo events that were associated with kilometric type II radio bursts, and in-situ measurements of IP shock and CME signatures. The results show good agreement with the dynamic spectra of the type II frequency drifts and the in-situ measurements. This suggests that, in general, IP shocks associated with fast CMEs evolve as blast waves approaching 1 AU, implying that the CMEs do not drive their shocks any further at this heliocentric range.  相似文献   

3.
The probability of the interstellar wind atoms (H and He) to survive ionization by solar wind electrons is presented. For the first time a dual temperature electron distribution is used to model the effects of “core” (10 eV) and “halo” (60 eV) solar electrons on the probabilities. Survival probability distributions as a function of helicocentric distance were calculated for variations in the electron temperature, solar radiation force, and the interstellar wind flow velocity. These probabilities are important in determining the radial density distributions of the interstellar atoms. It has been found that the interstellar wind has a distinctively higher probability of surviving “halo” rather than “core” electron ionization only at heliocentric distances, ρ, smaller than about 0.5 a.u. For distances larger than 0.5 a.u., the probabilities of surviving “halo” electrons are close to the probabilities of surviving “core” electrons. Also, the probabilities for both “core” and “halo” electrons are relatively insensitive to changes in u (interstellar wind velocity at infinity), μ (the solar ratio of radiation to gravitational force) and α (a model parameter for solar electron temperature) for ρ > 0.5. For distances smaller than that, the sensitivity increases significantly.  相似文献   

4.
We investigate the mass-temperature relation of clusters for both the spherical NFW halo model and a concentric triaxial halo model. We study the temperature and density distributions of both an isothermal and a polytropic intra-cluster gas in hydrostatic equilibrium. We find that both the uncertainties in the concentration parameter and in the eccentricities (in case of the triaxial halo) lead to a greater scatter in the emission-weighted temperature at a given halo mass for less massive clusters. This may be helpful when determining the intrinsic statistical error of the σ8 normalization of the linear power spectrum from cluster abundance.  相似文献   

5.
张军  汪景 《天文学进展》2001,19(2):146-146
主要介绍晕状日冕物质抛射(halo CMEs)的产生机制,包括向量磁场演化是怎样触发halo CMEa的:halo CME与耀斑,暗条活动的相互关系怎样,是否有规律可循,暗条爆发,耀斑等活动现象是如何相互联系的,halo CME事件是由一个活动区域或一个活动事件驱动物,还是多个活动区或多个活动事件相互作用的结果,给出两个halo CME的日面起源的观测例证,提出相反极笥的磁场对消是CME日面源区磁场演化的主要特征。  相似文献   

6.
G. Michalek 《Solar physics》2010,261(1):107-114
A set of 106 limb CMEs which are wide and could be possible halo events, when directed towards Earth, are used to check the accuracy of the asymmetric cone model. For this purpose characteristics of CMEs (widths and radial speeds) measured for the possible halo CMEs are compared with these obtained for halo CMEs using the asymmetric cone model (Michalek, Solar Phys. 237, 101, 2006). It was shown that the width and speed distributions for both datasets are very similar and with a probability of p>0.93 (using the Kolmogorov – Smirnov test) were drawn from the same distribution of events. We also determined the accurate relationship between radial (V rad) and expansion (V exp) speeds of halo CMEs. This relation for the halo CMEs is simply V rad=V exp and could be very useful for space weather application.  相似文献   

7.
1 INTRODUCTIONCoronal majss ejections (CMEs) are often seen as spectacular eruptions of matter fromthe Sun which propagate outward through the heliosphere and often interact with the Earth'smagnetosphere (Hundhausen, 1997; Gosling, 1997; and references herein). It is well known thatthese interactions can have substalltial consequences on the geomagnetic environment of theEarth, sometimes resulting in damage to satellites (e.g., McAllister et al., 1996; Berdichevskyet al., 1998). CMEs…  相似文献   

8.
Song  Limin  Zhang  Jun  Yang  Zhiliang  Wang  Jingxiu 《Solar physics》2002,211(1-2):315-331
By using multi-wavelength observations, we explored the atmospheric dynamics and the surface magnetic activity in NOAA 9026, which were associated with the initiation of a halo coronal mass ejection (CME) on 6 June, 2000. In an interval of less than two hours, two X-class X-ray flares took place successively, each along with one eruption of a filament. However, only the second X-class flare which is characterized by a rather large-scale (larger than a general active region in area) EUV dimming was associated with the CME initiation. It seems that a flare with an extensive dimming is more likely to be CME-associated. We focused our study on the daily evolution of the vector magnetic field in this region from 4 to 9 June and have found the following results. (1) The gradual squeeze and cancellation of the opposite polarity magnetic fields are the main patterns of magnetic evolution. Moreover, there is a spatial coincidence between the sites of magnetic flux cancellation and the locations of the early filament activation and the flare brightenings. (2) The current system increased in the first two days and began to decrease at least ten hours before the CME initiation. It underwent dramatic disruption from 6 to 7 June. (3) The transverse component of the the vector magnetic field appeared helical in configuration. It changed from compact to loose and dissipated from a small to a large area. Here we suggest that although the first filament eruption and first flare were not in step with the CME initiation, they seem to be a part of the entire process. The observed evolution of the magnetic field implies a continuous transport of magnetic energy and complexity from the lower atmosphere to the corona. Moreover, the slow magnetic reconnection in the lower atmosphere, manifested as magnetic flux cancellation, and the helicity re-distribution, appear to play a key role in the energy build-up process of the flares and the initiation of the halo CME.  相似文献   

9.
10.
We compare the geoeffective parameters of halo coronal mass ejections (CMEs). We consider 50 front-side full-halo CMEs (FFH CMEs), which are from the list of Michalek, Gopalswamy, and Yashiro (Solar Phys. 246, 399, 2007), whose asymmetric-cone model parameters and earthward-direction parameter were available. For each CME we use its projected velocity [V p], radial velocity [V r], angle between cone axis and sky plane [γ] from the cone model, earthward-direction parameter [D], source longitude [L], and magnetic-field orientation [M] of its CME source region. We make a simple linear-regression analysis to find out the relationship between CME parameters and Dst index. The main results are as follows: i) The combined parameters [(V r D)1/2 and V r γ] have higher correlation coefficients [cc] with the Dst index than the other parameters [V p and V r]: cc=0.76 for (V r D)1/2, cc=0.70 for V r γ, cc=0.55 for V r, and cc=0.17 for V p. ii) Correlation coefficients between V r γ and Dst index depend on L and M; cc=0.59 for 21 eastern events [E], cc=0.80 for 29 western events [W], cc=0.49 for 17 northward magnetic-field events [N], and cc=0.69 for 33 southward magnetic-field events [S]. iii) Super geomagnetic storms (Dst≤?200 nT) only appear in the western and southward magnetic-field events. The mean absolute Dst values of geomagnetic storms (Dst≤?50 nT) increase with an order of E+N, E+S, W+N, and W+S events; the mean absolute Dst value (169 nT) of W+S events is significantly larger than that (75 nT) of E+N events. Our results demonstrate that not only do the cone-model parameters together with the earthward-direction parameter improve the relationship between CME parameters and Dst index, but also the longitude and the magnetic-field orientation of a FFH CME source region play a significant role in predicting geomagnetic storms.  相似文献   

11.
P. K. Manoharan 《Solar physics》2010,265(1-2):137-157
In this paper, I investigate the three-dimensional evolution of solar wind density and speed distributions associated with coronal mass ejections (CMEs). The primary solar wind data used in this study has been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, which is capable of measuring scintillation of a large number of radio sources per day and solar wind estimates along different cuts of the heliosphere that allow the reconstruction of three-dimensional structures of propagating transients in the inner heliosphere. The results of this study are: i) three-dimensional IPS images possibly show evidence for the flux-rope structure associated with the CME and its radial size evolution; the overall size and features within the CME are largely determined by the magnetic energy carried by the CME. Such a magnetically energetic CME can cause an intense geomagnetic storm, even if the trailing part of the CME passes through the Earth; ii) IPS measurements along the radial direction of a CME at ~?120 R show density turbulence enhancements linked to the shock ahead of the CME and the core of the CME. The density of the core decreases with distance, suggesting the expansion of the CME. However, the density associated with the shock increases with distance from the Sun, indicating the development of a strong compression at the leading edge of the CME. The increase of stand-off distance between ~?120 R and 1 AU is consistent with the deceleration of the CME and the continued outward expansion of the shock. The key point in this study is that the magnetic energy possessed by the transient determines its radial evolution.  相似文献   

12.
13.
Features of solar microwave bursts (SMBs) associated with coronal mass ejections (CMEs) are analyzed, including the duration, peak flux, type, spectral index and so on. 136 events in the period 1999 Nov–2003 Sep (60 associated with partial/full halo CMEs and 76 with normal/narrow CMEs) are selected for study. It is found (1) that the SMBs associated with normal/narrow CMEs usually have short durations, while those associated with partial/full halo MEs have both short and long durations over a rather broad range, (2) that the SMBs associated with slow CMEs usually have short durations, while those associated with fast CMEs have durations that cover a rather large range, (3) that the SMBs associated with normal/narrow CMEs or slow CMEs have small peak fluxes, while those associated with partial/full halo CMEs have peak fluxes that cover a rather large range, (4) that most of the SMBs associated with normal/narrow CMEs are S (simple) type, while most of the SMBs associated with halo CMEs are C (complex) or GB (great burst) type, (5) that the spectra of most CME-associated events are rather flat in the high-frequency part. The statistical results indicate that some intrinsic physical relationship exists between CME/flare events and SMBs, and that the SMBs may provide information on CME/flare events.  相似文献   

14.
Using the ray-bundle method for calculating gravitational lens magnifications, we outline a method by which the magnification probability may be determined specifically in the weak lensing limit for cosmological models obtained from N -body simulations.
16 different models are investigated, which are variations on three broad classes of cold dark matter model: the standard model with  (Ω0, λ 0)=(1.0,0.0)  , the open model with  (Ω0, λ 0)=(0.3,0.0)  and the lambda model, which is a flat model with a cosmological constant  (Ω0, λ 0)=(0.3,0.7)  .
The effects of varying the Hubble parameter, H 0, the power spectrum shape parameter, Γ, and the cluster mass normalization, σ 8, are studied. It is shown that there is no signature of these parameters in the weak lensing magnification distributions. The magnification probability distributions are also shown to be independent of the numerical parameters such as the lens mass and simulation box size in the N -body simulations.  相似文献   

15.
The observed CME (coronal mass ejection) is its projection on the sky plane, and this leads to certain discrepancies between the observational and true parameters of the CME. For example, the observed velocity is generally smaller than the true velocity. The method of making projection correction for the CME velocity based on the conical model is utilized to analyze the velocity distributions of the 1691 CMEs which are only correlated to flares (called the class FL CMEs for short) and the 610 CMEs which are only correlated to filament eruptions (called the class FE CMEs for short) before and after the projection correction. These CMEs were observed with the Large Angle and Spectrometric Coronograph on the Solar and Heliospheric Observatory from September 1996 to September 2007 (close to a solar cycle). The obtained results are as follows: (1) before and after the projection correction the velocity distribution of FL CMEs is quite similar to that of FE CMEs, and before and after the projection correction the mean velocities of the two classes of CMEs are almost the same; (2) before and after the projection correction, the natural logarithm distribution of the FL CME velocities is also very similar to that of the FE CME velocities.  相似文献   

16.
An Asymmetric Cone Model for Halo Coronal Mass Ejections   总被引:1,自引:0,他引:1  
G. Michalek 《Solar physics》2006,237(1):101-118
Due to projection effects, coronagraphic observations cannot uniquely determine parameters relevant to the geoeffectiveness of CMEs, such as the true propagation speed, width, or source location. The cone model for Coronal Mass Ejections (CMEs) has been studied in this respect and it could be used to obtain these parameters. There are evidences that some CMEs initiate from a flux-rope topology. It seems that these CMEs should be elongated along the flux-rope axis and the cross section of the cone base should be rather elliptical than circular. In the present paper we applied an asymmetric cone model to get the real space parameters of frontsided halo CMEs (HCMEs) recorded by SOHO/LASCO coronagraphs in 2002. The cone model parameters are generated through a fitting procedure to the projected speeds measured at different position angles on the plane of the sky. We consider models with the apex of the cone located at the center and surface of the Sun. The results are compared to the standard symmetric cone model.  相似文献   

17.
18.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

19.
Several measurements of quasi-stellar object (QSO)–galaxy correlations have reported signals much larger than predictions of magnification by large-scale structure. We find that the expected signal depends strongly on the properties of the foreground galaxy population. On arcmin scales, it can be either larger or smaller by a factor of 2 for different galaxy types in comparison with a linearly biased version of the mass distribution. Thus the resolution of some of the excess measurements may lie in examining the halo occupation properties of the galaxy population sampled by a given survey; this is also the primary information such measurements will provide.
We use the halo model of clustering and simulations to predict the magnification-induced cross-correlations and errors for forthcoming surveys. With the full Sloan Digital Sky Survey, the statistical errors will be below 1 per cent for the galaxy–galaxy correlations and significantly larger for QSO–galaxy correlations. Thus accurate constraints on parameters of the galaxy halo occupation distribution can be obtained from small-scale measurements and on the bias parameter from large scales. Since the lensing-induced cross-correlation measures the first moment of the halo occupation number of galaxies, these measurements can provide the basis for interpreting galaxy clustering measurements that measure the second- and higher-order moments.  相似文献   

20.
N -body simulations of cold dark matter (CDM) have shown that, in this hierarchical structure formation model, dark matter halo properties, such as the density profile, the phase-space density profile, the distribution of axial ratio, the distribution of spin parameter and the distribution of internal specific angular momentum, follow 'universal' laws or distributions. Here, we study the properties of the first generation of haloes in a hot dark matter (HDM) dominated universe, as an example of halo formation through monolithic collapse. We find all these universalities to be present in this case also. Halo density profiles are very well fit by the Navarro, Frenk & White profile over two orders of magnitude in mass. The concentration parameter depends on mass as   c ∝ M 0.2  , reversing the dependence found in a hierarchical CDM universe. However, the concentration–formation time relation is similar in the two cases: earlier forming haloes tend to be more concentrated than their later forming counterparts. Halo formation histories are also characterized by two phases in the HDM case: an early phase of rapid accretion followed by slower growth. Furthermore, there is no significant difference between the HDM and CDM cases concerning the statistics of other halo properties: the phase-space density profile; the velocity anisotropy profile; the distribution of shape parameters; the distribution of spin parameter and the distribution of internal specific angular momentum are all similar in the two cases. Only substructure content differs dramatically. These results indicate that mergers do not play a pivotal role in establishing the universalities, thus contradicting models which explain them as consequences of mergers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号