首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poikiloblastic index minerals in pelitic rocks from the Orrs Island–Harpswell Neck area of coastal Maine contain inclusion textures that indicate sequential growth of progressively higher grade metamorphic minerals during development of a near-vertical crenulation foliation. The sequence of zones in the field is garnet, staurolite, staurolite–andalusite, staurolite–sillimanite and sillimanite. Inclusion fabrics characteristic of different stages in crenulation cleavage development indicate that index minerals nucleated and grew sequentially: biotite began to grow before deformation, garnet began to grow during early stages of crenulation cleavage development, staurolite grew during intermediate stages, and andalusite grew relatively late, when transposition of the foliation was nearly complete. Muscovite pseudomorphs and sillimanite were mainly post-kinematic. The fact that metamorphic index minerals grew sequentially in individual rocks in the same order in which they appear across the field area indicates that the high temperature part of the pressure–temperature path was similar to the metamorphic field gradient. Metamorphism in the Orrs Island–Harpswell Neck area is consistent with the magmatic heating model that has been proposed for western Maine. Sequential development of index minerals in pelitic rocks in the Orrs Island–Harpswell Neck area apparently resulted from sequential nucleation after substantial overstepping of mineral-forming reactions. Once nucleation of an index mineral had taken place, initial growth was rapid and poikiloblasts preserved inclusion trails characteristic of the prevailing stage of crenulation cleavage development. Because nucleation of sillimanite may have required more overstepping of the andalusite–sillimanite reaction than nucleation at dehydration reactions, determination of metamorphic conditions for rapidly heated rocks such as these by comparison with a petrogenetic grid is problematic. Garnet zoning patterns in these rocks should reflect the fact that growth of garnet interiors occurred early during metamorphism in equilibrium with a low-grade assemblage. Only garnet rims would be expected to record the subsequent pressure–temperature path.  相似文献   

2.
Fan‐shaped polycrystalline staurolite porphyroblasts, 3–4 cm in length and 0.5 cm in width, occur together with centimetre‐sized euhedral prismatic staurolite porphyroblasts in pelitic schists of the Littleton Formation on the western overturned limb of the Bolton syncline in eastern Connecticut. The fans consist of intergrown planar splays of [001] elongated prisms, which are crudely radial from a single apex. The apical angles of the radial groupings range up to 70°. The orientations of the individual staurolite prisms are related by a rigid rotation about an axis perpendicular to the fan plane. The zone axes [001] always lie in the plane of the fan. Although the angle between the [100] zone axes of the individual prisms is uniform in each fan, it ranges from +30° to ?30° in different fans. Internally, the fans display: (i) remnants of a passively captured Si foliation defined by disc‐shaped quartz blebs (type 1 inclusions) and layers of very fine carbonaceous material and tabular ilmenite platelets; (ii) bent staurolite blades and undulose extinction along low‐angle (010) subgrain boundaries near the apex of the fans; (iii) wedge‐shaped dilatational zones containing equigranular inclusion‐free quartz, mica and staurolite, and (iv) growth‐related quartz inclusion trails roughly perpendicular to a crystal face (type 2 inclusions). The Si inclusion trails are typically perpendicular to the fan surface, radiate parallel to the blades, and show little to no curvature except at the very edge of the fans where they abruptly curve through nearly 90° into parallelism with an external Se foliation. Careful examination of the three‐dimensional geometry of fans based on U‐stage measurements, serial sections and two‐circle optical goniometric measurements permits a detailed reconstruction of their sequential development. The origin of a fan involves limited intracrystalline deformation and brittle crack dilation, spalling, rotation, and growth of small marginal fragments and of new staurolite along wedge‐shaped zones along the Si inclusion surfaces. Fans preferentially develop in porphyroblasts in which Si is subparallel to the 010 cleavage. These internal features reflect the rotation and deformation of a brittle porphyroblast relative to syn‐growth shear stresses.  相似文献   

3.
This paper describes the deformation and metamorphism recorded in the Zoovoorby staurolite schist, a sliver of pelitic supracrustal material in the 1.3–1.0 Ga eastern Namaqua Province, South Africa. The supracrustal Biesjepoort Group, of which the schist is a part, has undergone at least four phases of deformation (D1–D4). D1 and D2 are preserved in the pelitic schists; staurolite and garnet grew during D1, with staurolite growth persisting to the very earliest D2 crenulation. Andalusite, found in more Mg-rich schists, grew during D2, overprinting both S1 schistosity and S0 banding. S2 has been rotated both with respect to S1 (preserved as parallel orientated inclusion trails in garnet and staurolite) and with respect to its original orientation (preserved as open D2 crenulations in staurolite). Staurolite is dissolved against S2 in zones of progressive shear. The pseudomorphing of staurolite and andalusite by cordierite, and the preservation of relic grains of both minerals in a wide range of garnet–cordierite pelites throughout the eastern Namaqua Province infers that what is preserved fortuitously in the Zoovoorby locality is representative of the early metamorphic history of a much larger terrane. The high thermal gradients needed to attain estimated conditions of 540–550° C and 1.6–2.4 kbar require substantial heat input. Large amounts of foliated (syn-D2) granite amongst the supracrustal succession are inferred to be the result of delamination of a thickened crust at a destructive plate margin, generating an elevated thermal gradient during D1–D2 times.  相似文献   

4.
Inclusion trails in garnet and albite porphyroblasts in the Fleur de Lys Supergroup preserve successive generations of microstructures, some of which correlate with equivalent microstructures in the matrix. Microstructure–porphyroblast relationships provide timing constraints on a succession of seven crenulation cleavages (S1–S7) and five stages of porphyroblast growth. Significant destruction and alteration of early fabrics has occurred during the microstructural development of the rock mass. Garnet porphyroblasts grew episodically through four growth stages (G1–G4) and preserve a succession of five fabrics (S1–S5) as inclusion trails. Garnet growth during each of the four growth phases did not occur on all pre-existing porphyroblasts, resulting in contrasting growth histories between individual garnet porphyroblasts from the same outcrop. Albite porphyroblasts grew during a single stage of growth and have overgrown microstructures continuous with the matrix. The garnet and albite porphyroblast inclusion trails record a succession of crenulation cleavages without any rotation of the porphyroblasts relative to other porphyroblasts in the population.
Complex microstructural histories are best resolved by preparing multiple oriented thin sections from a large number of samples of different rock types within the area of study. The succession of matrix foliations must be understood, as it provides the most useful time-frame against which to measure the relative timing of phases of porphyroblast growth. Comparable microstructures must be identified in different porphyroblasts and in the rock matrix.  相似文献   

5.
Abstract In the Fleur de Lys Supergroup, western Newfoundland, inclusion trails in garnet and albite porphyroblasts indicate that porphyroblasts overgrew a crenulation foliation, without rotation, probably during the deformation event that produced the crenulations. Further deformation of the matrix resulted in strong re-orientation and retrograde metamorphism of the matrix foliation, which is consequently highly oblique to the crenulation foliation preserved in the porphyroblasts. The resulting matrix foliation locally preserves relics of the early crenulations, and also has itself been crenulated later in places. Thus the porphyroblasts grew before the later stages of deformation, rather than during the final stage, as had been suggested previously. The new interpretation is consistent with available 40Ar/39Ar cooling ages which indicate a late Ordovician-early Silurian metamorphic peak, rather than the Devonian peak suggested by previous workers. The inclusion patterns and microprobe data indicate normal outward growth of garnet porphyroblasts from a central nucleus, rather than as a series of veins as proposed by de Wit (1976a, b). However, the observations presented here support growth of porphyroblasts without rotation, which is implied by the de Wit model.  相似文献   

6.
The Variscan metamorphism in the Pyrenees is dominantly of the low‐pressure–high‐temperature (LP‐HT) type. The relics of an earlier, Barrovian‐type metamorphism that could be related to orogenic crustal thickening are unclear and insufficiently constrained. A microstructural and petrological study of micaschists underlying an Ordovician augen orthogneiss in the core of the Canigou massif (Eastern Pyrenees, France) reveals the presence of two syntectonic metamorphic stages characterized by the crystallization of staurolite (M1) and andalusite (M2), respectively. Garnet is stable during the two metamorphic stages with a period of resorption between M1 and M2. The metamorphic assemblages M1 and M2 record similar peak temperatures of 580°C at different pressure conditions of 5.5 and 3 kbar, respectively. Using chemical zoning of garnet and calculated P–T pseudosections, a prograde P–T path is constrained with a peak pressure at ~6.5 kbar and 550°C. This P–T path, syntectonic with respect to the first foliation S1, corresponds to a cold gradient (of ~9°C/km), suggestive of crustal thickening. Resorption of garnet between M1 and M2 can be interpreted either in terms of a simple clockwise P–T path or a polymetamorphic two‐stage evolution. We argue in favour of the latter, where the medium‐pressure (Barrovian) metamorphism is followed by a period of significant erosion and crustal thinning leading to decompression and cooling. Subsequent advection of heat, probably from the mantle, leads to a new increase in temperature, coeval with the development of the main regional fabric S2. LA‐ICP‐MS U–Th–Pb dating of monazite yields a well‐defined date at c. 300 Ma. Petrological evidence indicates that monazite crystallization took place close to the M1 peak pressure conditions. However, the similarity between this age and that of the extensive magmatic event well documented in the eastern Pyrenees suggests that it probably corresponds to the age of monazite recrystallization during the M2 LP‐HT event.  相似文献   

7.
Abstract Porphyroblast textures in a Karakorum phyllite reveal that porphyroblast growth was syn-tectonic with respect to a cleavage forming deformation. During and after porphyroblast growth it partitions the deformation such that zones of intensified cleavage are developed which wrap around the porphyroblast whilst the porphyroblast and its strain shadow undergo little deformation. Porphyroblast strain shadows comprise quartz, calcite and felspar with little mica, and are probably formed by solution transfer during deformation. Unless the deformation is so strongly partitioned that no deformation of the porphyroblasts and their immediate surrounds occurs, inequidimensional porphyroblasts will rotate. Porphyroblasts undergo some dissolution after they have finished growing.  相似文献   

8.
Abstract Low-pressure prograde metamorphism of pelitic rocks in the Cooma Complex, south-east Australia, has produced cordierite-andalusite schists at intermediate grades. The first foliation (S1) is preserved largely as inclusion trails in cordierite porphyroblasts. Microstructural evidence indicates that the cordierite porphyroblasts grew during the early stages of development of a crenulation-foliation (S2) and that andalusite porphyroblasts grew during the development of a later crenulation-foliation (S3). Microstructural evidence also indicates that the andalusite was a product of the prograde reaction: cordierite + muscovite ± andalusite + biotite + quartz. The occurrence of the products of this reaction in 'beard'structures between cordierite microboudins formed by extension in S3 confirms that the andalusite grew during the development of S3. The investigation shows that porphyroblast-matrix relationships can preserve the orientation of an early S-surface that has been largely obliterated from the matrix, as well as providing relatively direct evidence of sequential mineral growth and metamorphic reactions.  相似文献   

9.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

10.
Abstract In regional metamorphic rocks, the partitioning of deformation into progressive shearing and progressive shortening components results in strain and strain-rate gradients across the boundaries between the partitioned zones. These generate dislocation density gradients and hence chemical potential gradients that drive dissolution and solution transfer. Phyllosilicates and graphite are well adapted to accommodating progressive shearing without necessarily building up large dislocation density gradients within a grain, because of their uniquely layered crystal structure. However, most silicates and oxides cannot accommodate strain transitions within grains without associated dislocation density gradients, and hence are susceptible to dissolution and solution transfer. As a consequence, zones of progressive shearing become zones of dissolution of most minerals, and of concentration of phyllosilicates and graphite. Exceptions are mylonites, where strain-rates are commonly high enough for plastic deformation to dominate over diffusion rates and therefore over dissolution and solution transfer. Porphyroblastic minerals cannot nucleate and grow in zones of active progressive shearing, as they would be dissolved by the effects of shearing strain on their boundaries. However, they can nucleate and grow in zones of progressive shortening and this is aided by the propensity for microfracturing in these zones, which allows rapid access of fluids carrying the material presumed to be necessary for nucleation and growth. Zones of progessive shortening also have a number of characteristics that help to lower the activation energy barrier for nucleation, this includes a build up of stored strain-energy relative to zones of progressive shearing, in which dissolution is occuring. Porphyroblast growth is generally syndeformational, and previously accepted criteria for static growth are not valid when the role of deformation partitioning is taken into account. Porphyroblasts in a contact aureole do not grow statically either, as microfracturing, associated with emplacement, allows access of fluids in a fashion that is similar to microfracturing in zones of progressive shortening. The criteria used for porphyroblast timing can be readily accommodated in terms of deformation partitioning, reactivation of deforming foliations, and a general lack of rotation of porphyroblasts, with the spectacular exception of genuinely spiralling garnet porphyroblasts.  相似文献   

11.
Garnet crystals from low-pressure/high-temperature (LPHT) Ryoke metamorphic rocks in the Yanai district, south-western Japan, show several kinds of chemical zoning patterns that systematically vary with grain radius between c . 0.1 and 0.5  mm. Large grains (> c . 0.4  mm) show normal zoning and small grains (< c . 0.4  mm) show unzoned or reversely zoned cores. Observations of the chemical zoning and of the spatial and size distributions of the garnet grains between c . 0.1 and 0.5  mm in radius suggest that they were formed by continuous nucleation and diffusion-controlled growth.
A previously estimated temperature–time path ( T  – t path) for the Ryoke metamorphism, using 1-D numerical simulation, is characterized by a rapid increase in temperature, 0.0017  °C yr−1 on average, and a period of high temperature (>600  °C) shorter than 0.5 Myr, which was presumably caused by the intrusion of a granodiorite sheet. Chemical zoning of garnet grains with different radii simulated for the T  – t path using a numerical model of continuous nucleation and diffusion-controlled growth, in combination with intracrystalline diffusion, compares well with the observed zoning patterns in garnet grains with different radii. This is in spite of the fact that the simulated zoning patterns vary greatly, depending on subtle differences in the T–t history. Therefore, they suggest that the T–t path gives a good explanation for the LPHT Ryoke metamorphism. Although this study only refers to the Ryoke metamorphism, the technique may be applicable to thermal modelling of other metamorphic terranes.  相似文献   

12.
Foliation intersection/inflexion axes combined with pseudosections and garnet‐core isopleths reveal only 1.5 kbar variation in P–T conditions while plutons were emplaced regionally and deformation and metamorphism continued during orogenesis lasting 70 Myr. Tectonism ended with slight decompression into the cordierite stability field. Garnet growth was always overstepped by up to 100 °C occurring at conditions that staurolite growth was also possible. Episodic start, stop, start growth behaviour of both of these phases throughout this period did not result from the effects of bulk composition on their stability fields. Different porphyroblast growth patterns in same bulk composition and outcrop samples reveals reaction start/stop behaviour was controlled by the manner in which deformation partitioned through an outcrop. The regional isograds were established during the first period of bulk shortening near orthogonal to the orogen trend. They did not migrate across lower grade rocks during each of the subsequent periods of metamorphism in spite of dramatic changes in the direction of bulk shortening; rather they contracted slightly. During the youngest periods of orogenesis directed at a high angle to the current orogen trend the isograds were folded about axial planes parallel to the fold belt. The regional distribution of these isograds directly reflects the oldest period of pluton emplacement, with both controlled by orogen‐scale partitioning of bulk shortening at a high angle to the current orogen trend relative to intervening zones of transform‐like shear.  相似文献   

13.
ABSTRACT Microstructural and petrological data from the Jumping Brook metamorphic suite, western Cape Breton Highlands, suggest that a single episode of syntectonic prograde metamorphism, followed by uplift, cooling and associated retrogression, affected these rocks during mid-Palaeozoic times. Microstructures indicative of progressive crenulation foliation development can be traced from low-grade (chlorite zone) through high-grade (kyanite zone) rocks, allowing a clear sequence of porphyroblast growth to be established. Metamorphic reactions and P-T calculations suggest metamorphic conditions of 700-750°C at 8-10 kbar were achieved in kyanite zone rocks. Although a complete P-T-t path was not defined, combined petrological and geochronological data can be used to constrain computed P-T-t models. These models suggest that a component of post-metamorphic tectonic exhumation is required to explain the observed times of cooling and uplift. The microstructural and petrological data to not support the interpretation that the high-grade rocks represent pre-existing crystalline basement. Indeed, the metamorphic history, geochronology and computed tectonic models all point to a single, short-lived episode of Silurian-Devonian volcanism, intrusion, convergence, regional metamorphism and uplift, probably resulting from collision tectonics at an irregular continental margin.  相似文献   

14.
New data on the petrology and structure of the Aracena metamorphic belt shows that this is a subduction-related, low-pressure/high-temperature complex developed by plate convergence at the north margin of Gondwana during the Paleozoic. The low-pressure, inverted metamorphic gradient in MORB-derived amphibolites resulted from heating from the continental hanging wall during subduction. This implies that the previous heating of the continental rocks was related to subduction of an oceanic ridge and the creation of a slab window beneath the continental margin. This slab window brought the asthenosphere in contact with the continental margin inducing a shallow thermal anomaly and partial melting of the lithospheric mantle resulting in boninite magmatism.  相似文献   

15.
Schists from the Appalachian Orogen in south-east Vermont have undergone multiple phases of garnet growth. These phases can be distinguished by the trend and relative timing of f oliation i nflexion or i ntersection a xes (FIAs) of foliations preserved as inclusion trails in garnet porphyroblasts. The relative timing of different generations of FIAs is determined from samples containing porphyroblasts with two or three differently trending FIAs developed outwards from core to rim (multi-FIA porphyroblasts). Schists from south-east Vermont show a consistent pattern of relative clockwise rotation of FIA trends from oldest to youngest. Four populations or sets of FIAs can be distinguished on the basis of their relative timings and trends. From oldest to youngest, the four sets have modal peaks trending SW–NE, W–E, NNW–SSE and SSW–NNE. These peaks show that each of the four FIA sets has a statistically consistent trend at all scales across a 35×125 km area containing numerous mesoscopic and macroscopic folds. The FIAs of Set 4 are defined by inclusion trails that are continuous with matrix foliations, have trends subparallel to most folds and are inferred to have developed contemporaneously with these structures. Conversely, Sets 1 to 3 are oblique to and pre-date most matrix foliations and folds. All four FIA sets occur in Siluro-Devonian rocks and must have formed in the Acadian Orogeny. The lack of statistically significant differences in the distribution of FIA trends across the study area and their consistent relative timings in multi-FIA porphyroblasts, despite a complex regional deformation history involving numerous phases of folding at all scales, suggest the porphyroblasts have not rotated relative to one another. The change in FIA trend with time resulted from rotation of the kinematic reference frame of bulk flow, possibly as a consequence of the reorganization of lithospheric plates responsible for Acadian orogenesis. Recognition of distinct generations of FIAs provides a means of distinguishing different phases of porphyroblast growth. Four periods of garnet porphyroblast growth occurred in the schists of south-east Vermont. This growth was heterogeneously distributed on the cm2–m2 scale. No single porphyroblast records all stages of growth, and adjacent samples from the same or dissimilar rock types commonly contain porphyroblasts that preserve different sequences of growth. Factors that may have been responsible for switching porphyroblast growth on and off at this scale include: (i) subtle differences in bulk chemical composition; (ii) oscillating levels of heat, owing to the buffering effect of endothermic garnet-forming reactions; (iii) channelized infiltration of fluids with localized fluid buffering of bulk composition; and (iv) cyclic controls on the rates of diffusion and material transport of reactants, either by channelized fluid flow or by a changing pattern of microfracturing during foliation development. Consistency in FIA trend and relative timing provide a new method for potentially distinguishing and correlating successive metamorphic events, or even phases of metamorphism within a progressive tectonothermal event, along and across orogens. Using a consistent pattern of core to rim changes in FIA trend, multiple phases of growth of a single porphyroblastic mineral can be quantitatively distinguished, allowing correlation of different phases of growth around and across macroscopic folds. The relative timing of growth of different porphyroblastic minerals can also be quantitatively determined using FIA data and correlated around and across macroscopic folds. Conceptually, the paragenetic history preserved in each generation of porphyroblast growth, in the form of chemical zoning and the minerals in inclusion trails, could be combined to produce a more detailed P–T–t–deformation path than previously determined.  相似文献   

16.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

17.
Abstract In the contact metamorphic aureole of the Tinaroo Batholith (north Queensland, Australia), mylonitic rocks were metamorphosed during a regional folding/crenulation event (D2) synchronous with the emplacement of muscovite-bearing granitoids. Prismatic and skeletal andalusite porphyoblasts grew in carbonaceous schists, mainly from the dissolution of staurolite. Muscovite, quartz and biotite played a dual role in this reaction, acting in a catalytic capacity as well as reactants or products. Staurolite was replaced by coarse-grained muscovite ± biotite, whereas andalusite locally replaced quartz ± muscovite ± biotite, with diffusion of H, Al, Si, Mg, Fe and K ionic species linking sites of dissolution and growth. Graphite contributed to the reaction mechanism in a number of ways. Accumulations of graphite in front of advancing andalusite crystal faces led to skeletal growth and the formation of chiastolite structure, where incremental growth occurred on adjacent {110} faces, with subsequent filling in and inclusion of graphite along the diagonal zones. The presence of graphite in some layers in the schist matrix prevented recrystallization of strained muscovite grains. The muscovite grains in these layers, in contrast to adjacent thin non-graphitic layers, were preferentially replaced by quartz. This resulted in muscovite-depletion haloes in graphitic layers around andalusite porphyroblasts. Somewhat arcuate zones of graphite, concentrated during dissolution of quartz along a crenulation cleavage, occur on some andalusite faces. Reactivation of the mylonitic foliation during the formation of D2 crenulations led to a preferential dissolution of quartz in zones of progressive shearing localized near andalusite porphyroblasts and hence the accumulation of graphite. Lack of deflection of the pre-existing mylonitic foliation and anastomosing of the axial planes of D2 crenulations around andalusite porphyroblasts demonstrate not only the timing of growth, but also that growing porphyroblasts do not push aside existing foliations.  相似文献   

18.
新疆阿尔泰造山带低压变质作用相平衡研究   总被引:2,自引:3,他引:2  
通过对阿尔泰造山带低压型变质序列中典型泥质岩石进行详细的岩相学及相平衡研究,获得黑云母带变质作用的温度为445~550℃和压力为0.2~0.6 GPa;石榴石带为480~566℃、0.54±0.22 GPa;十字石带601±20℃、0.8±0.25GPa;十字石-红柱石带540±20℃、0.32±0.05 GPa,而632.4℃、0.785 GPa这个值不是红柱石的稳定范围,这可能是其早期中压变质作用条件;矽线石带为640℃、0.43 GPa左右,由于石榴石中有蓝晶石包体,因此其早期也可能经历中压条件的变质;堇青石-矽线石带740~800℃、0.4~0.7 GPa。阿尔泰造山带低压变质序列不是一个正常的变质序列,其野外变质梯度呈现“Z”字型特征。阿尔泰造山带低压变质作用可能形成于早期中压变质岩的挤压抬升和以此相关的大量花岗岩侵入的构造环境中。  相似文献   

19.
In the Hazeldene area, situated in the Mount Isa Inlier, Queensland, the metamorphic grade changes from chlorite zone, through biotite and cordierite zones, to sillimanite/K-feldspar zone.
Microstructural studies of rocks near the sillimanite isograd demonstrate that cordierite grew early during the development of a steep foliation (S2), was replaced by biotite, andalusite and sillimanite at the metamorphic peak late in S2, and in turn by kyanite + chlorite adjacent to localized small post-D2 shear zones. Although the anticlockwise P–T–t path is well defined, the precise P–T conditions are uncertain because of problems with experimental and thermodynamic data. The best estimate for the metamorphic peak for rocks close to the sillimanite isograd is around 600° C at 4 kbar.
The metamorphism has been dated at 1544 Ma, and was synchronous with a major crustal shortening event. Because proposed extensional events occurred more than 60 Ma earlier, their contribution to the peak metamorphic thermal perturbation would have been insignificant. The syn-metamorphic Mica Creek Pegmatites, the abundance of high heat-producing elements in the nearby pre-D2 Sybella Granite, and advective heat by fluids which caused considerable metasomatism in the Hazeldene area, may have each contributed to the thermal budget. However, the metamorphic thermal gradient may be 80°C km-1 or higher, strongly suggesting a local magmatic control. As none are known in the area, such syn-metamorphic plutons would have to lie beneath the exposed high-grade rocks.  相似文献   

20.
This paper describes the progressive metamorphism and deformation of a series of metasediments, Le Conquet Schists and their higher grade equivalents, which occur as tectonically emplaced screens within a sequence of foliated gneisses, the Gneiss de Brest and Gneiss de Lesneven. The sequence exhibits a steep south to north increase in metamorphic grade from garnet-staurolite schist to sillimanite gneiss and sillimanite-K-feldspar migmatite. The relationship of mineral growth to foliation development has been established for individual screens. At least five phases of deformation (D1-D5) are preserved. Analysis of porphyroblast inclusion trails is used to demonstrate sequential mineral growth during the successive development of orthogonal foliations S1-S4. Porphyroblasts continued to grow during the subsequent development of C-S mylonite fabrics and extensional crenulation cleavages which are genetically related to a series of high-strain zones (D5). Mineral assemblages, phase relations and mineral chemistry are consistent with porphyroblast growth being the result of continuous reactions. Microstructure-porphyroblast relations are used to show that although mineral growth proceeded during continuous reactions, these only operated episodically. Phase relations, mineral chemistry and P-T estimates are used to constrain P-T trajectories and these are linked to the deformation histories within individual screens. A comparison between the resulting pressure-temperature-deformation paths is used to demonstrate that the metamorphic peak occurred progressively later and at successively lower pressures with increasing metamorphic grade. It is suggested that the early evolution of the belt is the result of crustal thickening by overthrusting. The subsequent history is one of progressive heating and unroofing of the higher grade rocks in a dextral strike-slip transtensional shear zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号