首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinematics of the material motion in a variable magnetic field in the MHD approximation of a strong field and cold plasma is investigated. The variation of magnetic moments of two dipole systems leads to the development of such phenomena as loop prominences, coronal rain and funnel prominences.  相似文献   

2.
Loop prominences that appear after some solar flares may owe their form and duration to the behavior of the cooling function of the material (Cox and Tucker, 1969) and to the magnetic field configuration. Computer simulation of a model event shows that small temperature contrasts in a medium of several million degrees temperature may be enhanced as the medium cools by line and recombination radiation, on a time scale of several minutes. The loop prominence systems could be the result of this process repeated through successively higher levels of the solar atmosphere.  相似文献   

3.
J. Kleczek 《Solar physics》1969,7(2):238-242
A new type of sunspot prominences (splintering loop prominences) is described. They have loop structure, but their material seems to originate from the lower layers. A tentative interpretation of the new type is given. In the splintering loop prominences on October 7, 1967 a phenomenon was observed which might be interpreted as the capture of an ejected prominence streamer by transverse magnetic fields of the loops.On leave from the Astronomical Institute of the Czechoslovak Academy of Sciences, Ondejov.  相似文献   

4.
By use of the dispersion equation given by Song, Wu, and Dryer (1987) for a cylinder plasma with mass motion and gravity included, we investigate the linear current instabilities developed in loop prominences. The results indicate that the mode of linear instability depends mainly on whetherv s 2 > or not, wherev s is the sonic velocity at heightz, =GM/(R +z) is the gravity potential,G the gravitational constant,M andR the mass and the radius of the Sun respectively. Ifv s 2 > , then the sausage instability will be dominant. Otherwise, the kink instability will be more important. A possible explanation of knot structure, which appears sometimes in solar loop prominences has been given.  相似文献   

5.
A study is made of X-ray line emission observed during the developing stages of a set of post-flare loop prominences. The time behaviour of the line emission can be described by a model consisting of two flux tubes containing plasma heated impulsively at the flash phase; the plasma cools by radiation and by conduction to the chromosphere. These ideas are extended to the possible formation of H prominences from low-lying hot loops.  相似文献   

6.
Pikel'ner computed a stationary solution for coronal gas streaming along a magnetic arch, which develops into a dense condensation similar to prominence matter. This paper discusses the choice of boundary conditions and presents additional solutions.  相似文献   

7.
Hildner  E. 《Solar physics》1974,35(1):123-136
We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

8.
Lines of magnetic force, computed under the assumption that the solar corona is free of electric currents, have been compared with loop prominence systems associated with three flares in August, 1972. The computed fields closely match the observations of loops at a height of 40000 km at times 3–4 h after onset of the associated flares. Inferred magnetic field intensities in the loops range from 1300 G where the loops converge into a sunspot to 50–80 G at 40 000 km above the photosphere. The first-seen and lowest-lying loops are sheared with respect to the calculated fields. Higher loops conform more closely to the current-free fieldlines. A model of Barnes and Sturrock is used to relate the degree of shear to the excess magnetic energy available during the flare of August 7. On various lines of evidence, it is suggested that magnetic energy was available to accelerate particles not only during the impulsive phase of the flare, but also during the following 2–3 h. The particle acceleration region seems to be in the magnetic fields just above the visible loops. The bright outer edges of the flare ribbons are identified as particle impact regions. The dense knots of loop prominence material fall to the ribbons' inner edges.On leave from Tel Aviv University, Tel Aviv, Israel.  相似文献   

9.
The classical method for determining the velocities of microturbulent motions in solar prominences is generalized to account for the possible opacity of the spectral lines. A new characteristic of a line is introduced which, for a given line formation mechanism, can be used to determine the optical thickness of the emitting region. The method is applied to lines in the EUV region observed with the SUMER spectrograph as part of the SOHO space program. Comparison with observational data not only confirms the validity of this mechanism for line formation, but also shows that the optical thickness of the medium is small for these lines. Difficulties involved in determining the kinetic temperature and, therefore, the microturbulent velocities, are discussed. Based on lines of various ions, this velocity is estimated to be on the order of 30–40 km/s.  相似文献   

10.
The temperature and density are obtained for coronal plasma in thermal and hydrostatic equilibrium and located in a force-free magnetic arcade. The isotherms are found to be inclined to the magnetic field lines and so care should be taken in inferring the magnetic structure from observed emission.When the coronal pressure becomes too great, the equilibrium ceases to exist and the material cools to form a quiescent prominence. The same process can be initiated at low heating rates when the width or shear of the arcade exceeds a critical value.We suggest that the prominence should be modelled as a dynamic structure with plasma always draining downwards. Material is continually sucked up along field lines of the ambient arcade and into the region lacking a hot equilibrium, where it cools to form new prominence material.  相似文献   

11.
Vidicon data for the intensities of Balmer and Paschen lines for n = 11 to 18 indicate a line ratio within 1σ of the theoretical value of 3.27, calculated with the assumptions of an optically thin atmosphere and angular momentum substates populated according to their statistical weights. The observed value is not consistent with the value of 8 reported in some early work, or with the model that higher angular momentum states have low populations.  相似文献   

12.
Pneuman  G. W. 《Solar physics》1983,88(1-2):219-239
A model for solar quiescent prominences nested in a Figure 8 magnetic field topology is developed. This topology is argued to be the natural consequence of the distention of bipolar regions upward into the corona. If this distention is slow enough so that hydrostatic equilibrium holds approximately along the field lines, the transverse gas pressure forces fall exponentially with height whereas the inward Lorentz forces fall as a power law. At a low height in the corona, the pressure forces cannot balance the Lorentz forces provided the field lines remain tied to the photosphere and an inward collapse with subsequent reconnection at the point of closest approach should occur. Because of initial shear in the magnetic field, the reconnection would produce isolated helices above the point of reconnection since field lines would not interact with themselves but with their neighbors. This resulting topology produces a field above the elevated neutral line which is opposite in polarity to that of the photospheric field as in the current sheet models of Kuperus and Tandberg-Hanssen (1967). Raadu and Kuperus (1973), Kuperus and Raadu (1974), and Raadu (1979) and in agreement with recent observations of Leroy (1982), and Leroy et al. (1983).Assuming the isolated helices formed by reconnection are insulated from coronal thermal conduction and heating, the radiative cooling process and condensation is considered for the temperature range of 104-6000 K. This condensation results in a steady downflow to the bottom of the helices as the temperature scale-height falls, thus forming a dense, cool, prominence at the bottom of the helical configuration resting on the elevated neutral line with the remainder of the helix being essentially evacuated of material. We identify this neutral line at the bottom of the prominence with the sharp lower edge often seen when viewing quiescent prominences side-on and the evacuated helix with the coronal cavity observed around prominences when seen during total eclipses.Downflow speeds associated with the condensation process are calculated for prominence temperatures and yield velocities in the range of the observed downflows of about 1 km s–1.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
It is argued that the quiscent prominences are a natural consequence of the formation and thermal instability of current sheets in the corona. Thus observation and theory of prominences can give vital information on the presence of currents and the topology of magnetic fields in the corona. Conversely by developing the theory of the structure and evolution of current sheets under coronal conditions we can attempt to gain a comprehensive understanding of the structure, evolution, and mass and energy balance of quiescent prominences. A stability analysis for coronal material permeated by a vertical magnetic field rooted in the photosphere, indicates that a condensation will take the form of a thin vertical wedge of cool matter. The development of a finite condensation is followed and it is shown that photospheric line tying is only important in the initial stages. A perturbation analysis of vertical motions at the neutral sheet shows that thermal instability can lead to overstable oscillations. Cooling of coronal material can lead to both upward and downward mass motions, and gravitational energy release is important to the thermal balance of prominences. Relevant optical and radio observations are discussed. Synoptic observations of the development of active regions and magnetic fields are needed to test the basic hypothesis of the formation of prominences from neutral sheets.  相似文献   

14.
The qualityQ of a resonance is defined as the ratio of the total energy contained in the system to the dissipation per driving cycle. Hence, a good quality resonance is one with little losses, i.e., little dissipation per driving cycle. However, for heating coronal plasmas by means of resonant absorption of waves, bad quality resonances are required. Here, the quality of the MHD resonances that occur when an inhomogeneous coronal loop is excited by incident waves is investigated for typical coronal loop parameter values in the frame work of linear, resistive MHD. It is shown that the resonances in coronal loops have bad quality and, hence, yield a lot of Ohmic heating per driving cycle compared to the total energy stored in the loop. As a consequence, the time scales of the heating process are relatively short and resonant absorption turns out to be a viable candidate for the heating of the magnetic loops observed in the solar corona.  相似文献   

15.
We suggest the following heuristic model for the evolution of a quiescent filament. The middle part of the filament rises due to heating, while its ends remain anchored in the chromosphere; and a kink appears in the H filament due to projection and line-of-sight effects. Further, the top segment of the filament rises rapidly above the solar surface 1–2 days before the disappearance of a filament or eruption of a prominence. The top of the filament attains a high temperature due to further heating, thereby becoming invisible in H, giving the impression that the filament has split into two parts. It is expected that this gap between the H filament can be seen in the observations in high-temperature lines and soft X-rays.  相似文献   

16.
Verma  V.K. 《Solar physics》2000,194(1):87-101
The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957–1998 (solar cycles 19–23). The east-west (E-W) distribution study shows that the frequency of SAP events in the 81–90° slice (in longitude) near the east and west limbs is up to 10 times greater than in the 1–10° slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 11–20° slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19–23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).  相似文献   

17.
A two-dimensional model of prominence formation in a region containing a magnetic neutral sheet is constructed for a variety of initial conditions, assuming the coronal plasma to be described by the usual hydromagnetic approximation, with infinite electric conductivity. In each case the magnetic field is initially vertical, varying antisymmetrically with respect to the neutral sheet, to a maximum value at a distance of 70 000 km from the neutral sheet. In the first case, the plasma is initially in hydrostatic equilibrium, whereas in successive cases, the pressure is assumed to be of such a value that the plasma is in lateral equilibrium of total pressure (gas plus magnetic). In a variation of this case, the value of the solar gravitational field was artificially reduced, and the effects considered. Large lateral motions are produced in each case, thus apparently inhibiting the condensation of prominences, with the exception of the unrealistic case of artificially reduced gravity. The results suggest that consideration either of a third component of the magnetic field (horizontal and parallel to the neutral sheet), or a finite conductivity, allowing magnetic recombination across the neutral sheet, or both, would more realistically represent the problem and might thus show the development of prominences.  相似文献   

18.
In this paper, the energy storage for a spotless two-ribbon flare is discussed with reference to the morphology of the chromospheric fibrils surrounding a filament prior to the flare. Also, on the basis of the Kippenhahn-Schluter model of filaments, we discuss the instability of magnetic structure in these filaments. We found that once the gradient of the magnetic field or the curvature of the magnetic “trough” exceeds certain critical value, the Rayleigh-Taylor instability will be triggered off, leading to the sudden disappearance (Disparition Brusque) of the filament. At the same time, a neutral current sheet will be formed in the field with magnetic flux concentrated on both sides of the filament. Rapid reconnection of the field lines then lead to the onset of a two-ribbon flare.  相似文献   

19.
The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because a slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence.  相似文献   

20.
Spatially well resolved prominence spectra of the three lines Ca+ K, H, and Ca+ 8542 are analysed. It is confirmed that the branching in the emission relations of Ca+ versus H correlates with the magnitude of non-thermal (turbulent) broadening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号