首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarity solutions for the propagation of plane relativistic shock waves in a slowly moving medium, where the nucleon number density obeys an exponential law ofx/t, is obtained in this paper. The shock surface moves with constant velocity and the total energy of the disturbance is dependent on time. The solutions are applicable only to an isothermal medium.  相似文献   

2.
Solutions in series for the propagation of relativistic shock waves with axial symmetry are obtained in this paper. We assume that the gaseous elements move almost radially and that the disturbance moves through a cold gas at rest wherein the nucleon number density and the energy density obey an exponential law of distance from a given plane. The motion is sustained by continuous explosions in the central region liberating energy varying as the cube of time. Also, we assume the equation of state of the moving elements as that of photonic gas.  相似文献   

3.
In this paper we obtain similarity solutions for the propagation of plane relativistic shock waves in the presence of a transverse magnetic field for the medium, where the nucleon number density obeys a power law of distance from the plane of explosion. The shock surface moves with constant velocity and the total energy of the disturbance is dependent on time. The solutions are applicable only to an isothermal medium or a cold gas.  相似文献   

4.
In this paper we obtain similarity solutions for the propagation of cylindrical relativistic shock waves in the presence of a constant azimuthal magnetic field or in its absence for the medium, where the nucleon number density is uniform. The shock surface moves with constant velocity and the total energy of the disturbance is dependent on time. The solutions are applicable only to an isothermal medium or a cold gas.  相似文献   

5.
We have analyzed 149 flare-associated shock wave events based on interplanetary scintillation (IPS) observational data. All of the flare-associated shock waves tend to propagate toward the low latitude region near the solar equator for flares that are located in both the solar northern and southern hemispheres. Also, the fastest propagation directions tend toward the heliospheric current sheet near 1 AU. We suggest that this tendency is caused by the dynamic action of near-Sun magnetic forces on the ejected coronal plasma that traverses the helmet-like magnetic topologies near the Sun outward to the classical topology that is essentially parallel to the heliospheric current sheet.  相似文献   

6.
Magnetogasdynamic shock waves propagating in a medium of increasing density are discussed. The shock travels in a dense atmosphere. We have used the Runge-Kutta method to obtain a numerical solution of the problem. The distribution of flow variables behind the shock are shown by graphs.  相似文献   

7.
8.
9.
Using a well-known similarity method, different aspects of cylindrical shock waves in magnetogasdynamics are investigated. Weak and strong shocks have been discussed in strong magnetic field. Combined effects of both the components of magnetic field on flow variables are studied.  相似文献   

10.
Self-similar motion of a perfect gas behind a cylindrical shock wave with radiation heat flux in the presence of an azimuthal magnetic field have been discussed. The shock is assumed to be propagating in a medium at rest with non-uniform density. The conductivity of the gas is infinite and magnetic permeability is one everywhere. Also, the shock is assumed to be transparent and isothermal.  相似文献   

11.
Self-similar flows of a perfect gas behind the cylindrical shock wave propagating exponentially in an atmosphere whose density varies inversely as the fourth power of shock radius are investigated. The effects of radiation flux has also been taken into consideration. The total energy of the wave is constant.  相似文献   

12.
Cylindrical Korteweg-de Vries-Burgers (cKdVB) equation for magnetoacoustic wave is derived for dissipative magneto plasmas. Two fluid collisionless electromagnetic model is considered and reductive perturbation method is employed to study the propagation of magnetoacoustic shock waves in cylindrical geometry. Two level finite difference method is employed by using Runge-Kutta method to solve cKdVB equation numerically. The effects of nonplanar geometry, plasma density, magnetic field strength, temperature dependence and kinematic viscosity on magnetoacoustic shocks are investigated. The numerical results are also presented for illustration.  相似文献   

13.
Similarity solutions for propagation of plane relativistic shock waves through a medium of decreasing nucleon density and approaching the edge of the gas as well as for the subsequent motion of the gas after the shock front arrives at the vacuous boundary are studied in this paper. The medium in the pre-disturbed stage is assumed cold and in the disturbed stage its equation of state is taken as that of a photonic gas.  相似文献   

14.
《Chinese Astronomy》1978,2(2):311-317
In this paper the propagation of low frequency electro-magnetic waves with large amplitudes in a magnetized plasma is discussed. It is shown that penetration of the magnetic-dipole radiation in the medium of the Crag Nebula seems possible  相似文献   

15.
The results of numerical simulations of light curves and spectra and the influence of special relativity effects at the epoch of supernova shock breakout are considered. The algorithm of the RADA code used in the simulations is described. Prospects for using the numerical simulation results to analyze and interpret available and future data from the SWIFT and LOBSTER space observatories are discussed.  相似文献   

16.
In this paper propagation of magnetogasdynamic spherical shock waves is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. It is shown that the magnetic field changes the flow velocity, density and pressure.  相似文献   

17.
A model of cylindrical shock waves is investigated under the action of monochromatic radiation into non-uniform stellar interiors with a constant intensity on a unit area. We have assumed that the radiation flux moves through the gas.  相似文献   

18.
By use of the approximate method of Whitham (1958) the effect of magnetic field is investigated on a point explosion in a medium exihibiting exponential decrease of density and temperature. It has been found that the shock velocity and shock Mach number first decrease, but after a certain distance they start increasing.  相似文献   

19.
Non-similarity solutions for the propagation of strong plane shock waves in optically-thin grey atmosphere are investigated. The density increases exponentially under low pressure. The shock moves with variable velocity and the total energy of the wave is not constant. Planck's diffusion approximation has been taken into account in the present problem.  相似文献   

20.
By use of the approximate method of Whitham (1958), the propagation of magnetogasdynamic spherical shock waves is considered for adiabatic and isothermal flows in a decreasing density medium. The effect of initial magnetic fields on the shock velocity is discussed; and a comparison made between adiabatic and isothermal cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号