首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A microstructure model of dual-porosity type is proposed to describe contaminant transport in fully-saturated swelling clays. The swelling medium is characterized by three separate-length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the nanoscale, the medium is composed of charged clay particles saturated by a binary monovalent aqueous electrolyte solution. At the intermediate (micro) scale, the two-phase homogenized system is represented by swollen clay clusters (or aggregates) with the nanoscale electrohydrodynamics, local charge distribution, and disjoining pressure effects incorporated in the averaged constitutive laws of the electro-chemo-mechanical coefficients and the swelling pressure, which appear in Onsager’s reciprocity relations and in a modified form of Terzaghi’s effective principle, respectively. The microscopic coupling between aggregates and a bulk solution lying in the micropores is ruled by a slip boundary condition on the tangential velocity of the fluid, which captures the effects of the thin electrical double layers surrounding each clay cluster. At the macroscale, the system of clay clusters is homogenized with the bulk fluid. The resultant macroscopic picture is governed by a dual-porosity model wherein macroscopic flow and ion transport take place in the bulk solution and the clay clusters act as sources/sinks of mass of water and solutes to the bulk fluid. The homogenization procedure yields a three-scale model of the swelling medium by providing new nano and micro closure problems, which are solved numerically to construct constitutive laws for the effective electro-chemo-hydro-mechanical coefficients. Considering local instantaneous equilibrium between the clay aggregates and micropores, a quasisteady version of the dual-porosity model is proposed. When combined with the three-scale portrait of the swelling medium, the quasisteady model allows us to build-up numerically the constitutive law of the equilibrium adsorption isotherm, which governs the instantaneous immobilization of the solutes in the clay clusters. Moreover, the constitutive behavior of the retardation coefficient is also constructed by exploring its representation in terms of the local profile of the electrical double layer potential of the electrolyte solution, which satisfies the Poisson–Boltzmann problem at the nanoscale.  相似文献   

2.
In this study, the hydrochemical characteristics of shallow groundwater in a coastal region (Khulna) of southwest Bangladesh have been evaluated based on different indices for drinking and irrigation uses. Water samples were collected from 26 boreholes and analyzed for major cations and anions. Other physico-chemical parameters like pH, electrical conductivity (EC), and total dissolved solids were also measured. Most groundwater is slightly alkaline and largely varies in chemical composition, e.g. EC ranges from 962 to 9,370 μs/cm. The abundance of the major ions is as follows: Na+ > Ca2+ > Mg2+ > K+ = Cl > HCO3  > SO4 2− > NO3 . Interpretation of analytical data shows two major hydrochemical facies (Na+–K+–Cl–SO4 2− and Na+–K+–HCO3 ) in the study area. Salinity, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. Results suggest that the brackish nature in most of the groundwaters is due to the seawater influence and hydrogeochemical processes.  相似文献   

3.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl, with Na+ showing an especially strong correlation with Cl, indicating that these ions are derived from the same source of saline waters. The relationship between Cl/HCO3 ratios and Cl also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3 reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO42− and NO3 and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO42− and NO3 but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions.  相似文献   

4.
Hydrochemical investigations were carried out in Damagh area, Hamadan, western Iran, to assess chemical composition of groundwater. Forty representative groundwater samples were collected from different wells to monitor the water chemistry of various ions. Chemical analysis of the groundwater showed that the mean concentration of the cations is in the order Na+ > Ca2+ > Mg2+ > K+, while that for anions was HCO3 > Cl > SO42 − > NO3. All of the investigated groundwaters present two different chemical facies (Ca–HCO3 and Na–HCO3) which is in relation with their interaction with the geological formations of the basin, cation exchange between groundwater and clay minerals and anthropogenic activities. The principal component analysis (PCA) performed on groundwater identified three principal components controlling their variability in groundwater. Electrical conductivity, Mg2+, Na+, SO42−, and Cl content were associated in the same component (PC1) (salinity), determined principally by anthropogenic activities. The pH, CO32 −, HCO3, and Ca2+ (PC2) content were related to the geogenic factor. Finally, the NO3, Cl and K+ (PC3) were controlled by anthropogenic activity as a consequence of inorganic fertilizers.  相似文献   

5.
This study focuses on the thermodynamics of diagenetic fluid from the Eogene Xingouzui Formation which represents the most important reservoir in Field Oil T in the Jianghan Basin. The measured homogenization temperatures (110–139 °C) of fluid inclusions in diagenetic minerals fell within the range of 67 –155 °C at the middle diagenetic stage. The pressure of diagenetic fluid is estimated at 10.2 –56 MPa. The activity of ions in the fluid shows a tendency of Ca2+ > Mg2+ > Na+ > K+ > Fe3+ > Fe2+ for cations, and HCO 3 > SO 4 2− > F > Cl > CO 3 2− for anions. For the gaseous facies, there is a tendency of CO2> CO> H2S> CH4> H2. According to the thermodynamic calculations, the pH and Eh of the fluid are 5.86–6.47 and −0.73–−0.64V, respectively. As a result of the interaction between such a diagenetic fluid and minerals in the sediments, feldspars were dissolved or alterated by other minerals. The clay mineral kaolinite was instable and hence was replaced by illite and chloritoid. This project was jointly funded by the National Natural Science Foundation of China (49133080) and the Open Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences.  相似文献   

6.
A barrier system based on the hydraulic trap design concept for a landfill was proposed. To study the field scenario in which a clay liner is underlain by a granular layer functioning as a secondary leachate drain layer, a laboratory advection–diffusion test was performed to investigate factors controlling the transport of contaminants in a two-layer soil system. The soils used for this study were Ariake clay and, the underlying layer, Shirasu soil from the Kyushu region of Japan. Potassium (K+) was selected as the target chemical species with an initial concentration of 905 mg L−1. The effective diffusion coefficients (D e) of K+ for Ariake clay and Shirasu soil were back-calculated using an available computer program, Pollute V 6.3. Values of D e derived from this experiment are consistent with previously published ones. The Ariake clay has lower D e than the Shirasu soil. The hypothesis that mechanical dispersion can be considered negligible is reasonable based on both the observation that the predicted values well fit the experimental data and the analyses of two dimensionless parameters. Parametric analyses show that transport of K+ through soils is controlled by advection–diffusion rather than diffusion only, whereas at low Darcy velocity (i.e., ≤10−9 m s−1), transport of K+ will be controlled by diffusion. Applications of the test results and parametric analysis results in practical situations were reviewed.  相似文献   

7.
Sources of deep groundwater salinity in the southwestern zone of Bangladesh   总被引:2,自引:2,他引:0  
Twenty groundwater samples were collected from two different areas in Satkhira Sadar Upazila to identify the source of salinity in deep groundwater aquifer. Most of the analyzed groundwater is of Na–Cl–HCO3 type water. The trends of anion and cation are Cl > HCO3  > NO3  > SO4 2− and Na+ > Ca2+ > Mg2+ > K+, respectively. Groundwater chemistry in the study area is mainly governed by rock dissolution and ion exchange. The dissolved minerals in groundwater mainly come from silicate weathering. The salinity of groundwater samples varies from ~1 to ~5%, and its source is possibly the paleo-brackish water which may be entrapped during past geologic periods.  相似文献   

8.
A case study for the ion–aerosol interactions is presented from the simultaneous measurements of mobility spectra of atmospheric ions in the mobility range of 2.29 to 2.98 × 10 − 4 cmV − 1 s-1^{-1}(diameter range 0.41–109 nm) and of size distribution of atmospheric aerosol particles in the size ranges of 4.4–700 nm and 500–20,000 nm diameters made at Maitri (70°4552 S, 11°442.7 E; 130 m above mean sea level), Antarctica, on two days January 17 and February 18, 2005, with contrasting meteorological conditions. In contrast to January 17, on February 18, winds were stronger from the morning to noon and lower from the noon to evening, atmospheric pressure was lower, cloudiness was more, the land surface remained snow-covered after a blizzard on February 16 and 17 and the airmass over Maitri, descended from an altitude of ~3 km after an excursion over ocean. On these days mobility spectra showed two modes, corresponding to intermediate ions and light large ions and an indication of additional one/two maxima for small/cluster ions and heavy large ions. The small ions generated by cosmic rays, and the nucleation mode particles generated probably by photochemical reactions grew in size by condensation of volatile trace gases on them and produced the cluster and intermediate ion modes and the Aitken particle mode in ion/particle spectra. Particles in the size range of 9–26 nm have been estimated to grow at the rate of 1.9 nm h − 1 on February 18, 2005. Both, ions and aerosol particles show bimodal size distributions in the 16–107 nm size range, and comparison of the two size distributions suggests the formation of multiple charged ions. Attachment of small ions to particles in this bimodal distribution of Aitken particles together with the formation of multiple charged ions are proposed to result in the light and heavy large ion modes. Growth of the nucleation mode particles on February 18, 2005 is associated with the passage of the airmass over ocean. In contrast, though the ion size distributions were not much different, the aerosol size distributions did not show a dominant peak for the formation and growth of nucleation mode particles on January 17. More measurements are needed before the conclusion of this case study is generalized.  相似文献   

9.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

10.
Concentrations of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were measured in 13 surficial sediment samples collected at three lacustrine locations in the surroundings of Mexico City and four coastal areas of the States of Sinaloa, Sonora, Oaxaca and Veracruz. Total PCB concentrations span the interval 3.18–621 ng g−1. The highest values (63.7–621 ng g−1) were found in Mexico City, which is a highly anthropogenically impacted area, whereas low concentrations (3.18–12.9 ng g−1) were characteristic of seven places, some of them subject to intense hydrodynamics. In these latter cases, values increase by 18–73 times if normalised against the fine fraction (silt plus clay) content in sediment. Two samples from Mexico City exceed the ERM (Effect Range Median) guidelines and are likely to cause adverse effects. Samples contain only lower chlorinated PCBs (mainly 2-, 3- and 4-CB), thus suggesting that the most used PCB commercial mixture was Aroclor 1242. The homologue composition of the sample taken close to the nuclear power plant of Laguna Verde is identical to this commercial mixture. PAHs in the same samples have relatively low concentrations (14.9–287 ng g−1), well below ERL (Effect Range Low) guidelines. The composition of PAH mixtures accounts for the influence of both petrogenic and pyrolitic sources, with these latter prevailing at some places in Mexico City.  相似文献   

11.
Hazaribagh is a densely populated area of Dhaka city where about 185 leather processing industries have been operating and discharging solid and liquid wastes directly to the low-lying areas, river and natural canals without proper treatment. The area is covered by alluvial deposits of Holocene age and is underlain by Pleistocene Madhupur clay. The Dupi Tila Formation of Mio-Pliocene age underlain by this yellowish gray to brick red clay bed serves as the main water-bearing aquifer of Dhaka city. To assess the environmental degradation as well as the groundwater environment, major anions, cations and heavy metals of water samples, heavy metals and organic carbon content of sediment samples were analyzed in this study. Analyses of tannery effluent detect high concentration of Na+, Mg2+, Cl and SO 4 2− followed by Ca2+, NH 4 + and K+ with remarkable contents of some trace elements, mainly Cr, Fe, Mn, S, Ni and Pb. Higher accumulations of Cr, Al and Fe are observed in topsoil samples with significant amounts of Mn, Zn, Ni and Cu. Concentrations of ions and all the investigated trace elements of sampled groundwater were within the maximum allowable limit for drinking water of the Department of Environment, Bangladesh (DoE), and World Health Organization (WHO). However, excessive concentrations of Cr, Pb, etc., have already been reported in the shallow groundwater (10–20 m) of the area. Due to excessive withdrawal the vulnerability of groundwater contamination in deeper parts cannot be avoided for the future.  相似文献   

12.
Nitrate (NO3 ) is major pollutant in groundwater worldwide. Karst aquifers are particularly vulnerable to nitrate contamination from anthropogenic sources due to the rapid movement of water in their conduit networks. In this study, the isotopic compositions (δ15N–NO3 , δ15N–NH4 +) and chemical compositions(e.g., NO3 , NH4 +, NO2 , K+) were measured in groundwater in the Zunyi area of Southwest China during summer and winter to identify the primary sources of contamination and characterize the processes affecting nitrate in the groundwater. It was found that nitrate was the dominant species of nitrogen in most of the water samples. In addition, the δ15N–NO3 values of water samples collected in summer were lower than those collected in winter, suggesting that the groundwater received a significant contribution of NO3 from agricultural fertilizer during the summer. Furthermore, the spatial variation in the concentration of nitrate and the δ15N–NO3 value indicated that some of the urban groundwater was contaminated with pollution from point sources. In addition, the distribution of δ15N–NO3 values and the relationship between ions in the groundwater indicated that synthetic and organic fertilizers (cattle manure) were the two primary sources of nitrate in the study area, except in a few cases where the water had been contaminated by urban anthropogenic inputs. Finally, the temporal and spatial variation of the water chemistry and isotopic data indicated that denitrification has no significant effect on the nitrogen isotopic values in Zunyi groundwater.  相似文献   

13.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   

14.
Tunisian Chott’s region is one of the most productive artesian basins in Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and by hydrologic characteristics such as the flow pattern and time of residence. The system is composed of an upper unconfined “Plio-Quaternary” aquifer with a varying thickness of 20–200 m, an intermediate confined/unconfined “Complex Terminal” aquifer about 100 m in thickness and a deeper “Continental Intercalaire” aquifer about 150 m in thickness separated by thick clay and marl layers. The dissolution of evaporites and carbonates explains part of the contained Na+, Ca2+, Mg2+, K+, SO42− and Cl-, but other processes, such carbonate precipitation, also contributes to the water composition. The stable isotope composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the Plio-Quaternary aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater.  相似文献   

15.
A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite–smectite (I–S) and chlorite–smectite (C–S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I–S mineral with ca. 20–25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2–5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300–3,353 m (true vertical depth of ca. 2.7 km), with I–S (70:30) and C–S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I–S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I–S growth can be evaluated. Assuming a typical K+ concentration of 100–200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I–S minerals can be predicted to have formed over the last 4–11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film clay coating on polished brittle slip surfaces, can be explained by the influence of either cooler fluids circulating along this segment of the fault or the flow of K+-depleted brines.  相似文献   

16.
A detailed water quality analysis was carried out in the quaternary aquifer system of the marginal alluvial plain (Ganga Plain) in Bah Tahsil, Agra district, India. The electrical conductivity of 50 samples each from dug wells, hand pumps and tube wells was analysed for the study of salinity levels in shallow, intermediate and deep aquifers. Out of 50, 20 samples of each were also analysed for other chemical constituents such as Na+, K+, Cl, Fand TDS. The analyses show drastic changes in the salinity levels of shallow, intermediate and deep aquifers. The deep aquifers are more saline compared to the shallow and intermediate aquifers. On the contrary, the concentration of chemical constituents such as Na+, K+, Cl and Fwas more in the shallow aquifers compared to the deep aquifers. Moreover, there is an indication that the salinity and concentration of the above chemical constituents also escalate with time in each aquifer. The chemical constituents such as Na+, K+, Cl, F and TDS range from 51 to 165 mg/l, 1 to 14 mg/l, 224 to 1,459 mg/l, 0 to 1.5 mg/l and 750 to 2,650 mg/l, respectively. Over a 3-year period, the salinity levels have sharply increased and the average F level has increased by 0.1–0.3 mg/l. An attempt has been made here to discuss the factors causing the variation and escalation of chemical constituents and salinity in the water of the three aquifers.  相似文献   

17.
In this study, 92 groundwater samples were collected from the Attica region (Greece). Moreover, geographical information system database, geochemistry of groundwater samples and statistics were applied. These were used for studying the chemical parameters (NO3 , Mg2+, Ca2+, Cl, and Na+) and conductivity spatial distribution and for assessing their environmental impact. The ranges of chemical parameters of the water samples (in mg L−1) are: NO3 1–306, Mg2+ 2–293, Ca2+ 3–453, Cl 5–1,988, and Na+ 4–475. The elevated concentrations of sodium, Mg2+, Clare attributed to natural contamination (seawater intrusion). On the other hand, NO3 elevated concentrations are attributed to anthropogenic contamination (nitrate fertilizers). The results of the GIS analysis showed that elevated values of Na+, Mg2+, Clare related to shrubby and sparsely vegetated areas, while elevated values of NO3 are connected with urban and agricultural areas.  相似文献   

18.
Study of the groundwater samples from Tajarak area, western Iran, was carried out in order to assess their chemical compositions and suitability for agricultural purposes. All of the groundwaters are grouped into two categories: relatively low mineralized of Ca–HCO3 and Na–HCO3 types and high mineralized waters of Na–SO4 and Na–Cl types. The chemical evolution of groundwater is primarily controlled by water–rock interactions mainly weathering of aluminosilicates, dissolution of carbonate minerals and cation exchange reactions. Calculated values of pCO2 for the groundwater samples range from 2.34 × 10−4 to 1.07 × 10−1 with a mean value of 1.41 × 10−2 (atm), which is above the pCO2 of the earth’s atmosphere (10−3.5). The groundwater is oversaturated with respect to calcite, aragonite and dolomite and undersaturated with respect to gypsum, anhydrite and halite. According to the EC and SAR the most dominant classes (C3-S1, C4-S1 and C4-S2) were found. With respect to adjusted SAR (adj SAR), the sodium (Na+) content in 90% of water samples in group A is regarded as low and can be used for irrigation in almost all soils with little danger of the development of harmful levels of exchangeable Na+, while in 40 and 37% of water samples in group B the intensity of problem is moderate and high, respectively. Such water, when used for irrigation will lead to cation exchange and Na+ is adsorbed on clay minerals while calcium (Ca2+) and magnesium (Mg2+) are released to the liquid phase. The salinity hazard is regarded as medium to high and special management for salinity control is required. Thus, the water quality for irrigation is low, providing the necessary drainage to avoid the build-up of toxic salt concentrations.  相似文献   

19.
2 study area was assessed with respect to its heavy-metal load on the basis of the current guideline values. The heavy-metal loads of the soils in the study area have ranges of <0.2–200 mg kg−1 for Cd, <10–30,000 mg kg−1 for Pb, 7–10,000 mg kg−1 for Cu and 50–55,000 mg kg−1 for Zn. Mobility of the heavy metals was determined by extraction at different pH values. The acid neutralisation capacity (ANCx) at these pH values was also determined to estimate the probability that the pH can drop to pH=x. The ANC values in the study area ranged from 6 to 3000 mmol H+ kg−1, from −33 to 800 mmol H+ kg−1 and from −74 to 160 mmol H+ kg−1 for ANC3.5, ANC5.0 and ANC6.2, respectively. Together with pedological data, the extraction experiments permit differentiation between soil units that have been placed in the same environmental hazard class on the basis of total heavy-metal loads. Received: 10 August 1998 · Accepted: 14 August 1999  相似文献   

20.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号