首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Chemical records in ice and snow from polar ice sheets or mountain glacier can provide information about atmospheric composition, climate and environmental changes. Using glaciochemical records, the source of dust and moisture, and changes of atmospheric …  相似文献   

2.
Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen(δD) and oxygen(δ~(18)O) isotope using a Picarro L1102-i and water chemistry(e.g. major ions, p H, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry(e.g. TDS, p H, EC, Ca~(2+), Mg~(2+), Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ~(18)O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ~(18)O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO_3-SO_4 and Ca-Mg-HCO_3-SO_4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.  相似文献   

3.
塔里木河流域径流变化趋势及其对气候变化的响应   总被引:7,自引:0,他引:7  
This paper has studied the change of streamflow and the impact of climatic variability conditions on regional hydrological cycle in the headwater of the Tarim River Basin. This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann-Kendall test. Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim's headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the condition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%-16% when surface air temperature rises by 1 ℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their watershed properties promote runoff feeding by glacier and snow melt water and their fundamental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.  相似文献   

4.
This paper has studied the change of streamflow and the impact of climatic vari-ability conditions on regional hydrological cycle in the headwater of the Tarim River Basin. This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann–Kendall test. Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim’s headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the con-dition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%–16% when surface air temperature rises by 1℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their wa-tershed properties promote runoff feeding by glacier and snow melt water and their funda-mental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.  相似文献   

5.
中国冰川系统对气候变化响应的敏感性分析   总被引:5,自引:1,他引:4  
Data of 44 glacier systems in China used in this paper were obtained from Chinese Glacier Inventories and the meteorological data were got from Meteorological Atlas of Plateau of west China. Based on the statistical analysis and functional model simulation results of the 44 glacier systems in China, the glacier systems were divided into extremely-sensitive glacier system, semi-sensitive glacier system, extremely-steady glacier system and semi-steady glacier system in terms of glacier system's level of water-energy exchange, rising gradient of the equilibrium line altitudes and retreating rate of area to climate warming, their median size and vertical span distribution, and their runoff characteristics to climate warming. Furthermore the functional model of glacier system to climate warming was applied in this paper to predict the average variation trends of the 4 types of glacier systems, which indicate that different sensitivity types of glacier systems respond to the climate warming differently.  相似文献   

6.
The accumulation and ablation of a glacier directly reflect its mass income and wastage, and ice temperature indicates glacier's climatic and dynamic conditions. Glaciological studies at Baishui Glacier No.1 in Mt. Yulong are important for estimating recent changes of the cryosphere in Hengduan Mountains. Increased glacier ablation and higher ice temperatures can cause the incidents of icefall. Therefore, it is important to conduct the study of glacier mass balance and ice temperature, but there are few studies in relation to glacier's mass balance and active-layer temperature in China's monsoonal temperate glacier region. Based on the field observations of mass balance and glacier temperature at Baishui Glacier No.1, its accumulation, ablation, net balance and near-surface ice temperature structure were analyzed and studied in this paper. Results showed that the accumulation period was ranged from October to the following mid-May, and the ablation period occurred from mid-May to October, suggesting that the ablation period of temperate glacier began about 15 days earlier than that of continental glaciers, while the accumulation period began about 15 days later. The glacier ablation rate was 6.47 cm d 1 at an elevation of 4600 m between June 23 and August 30, and it was 7.4 cm d 1 at 4800 m between June 26 and July 11 in 1982, moreover, they respectively increased to 9.2 cm d 1 and 10.8 cm d 1 in the corresponding period and altitude in 2009, indicating that glacier ablation has greatly intensified in the past years. The temperature of the main glacier body was close to melting point in summer, and it dropped from the glacier surface and reached a minimum value at a depth of 4-6 m in the ablation zone. The temperature then rose to around melting point with the depth increment. In winter, the ice temperature rose gradually with the increasing depth, and close to melting point at the depth of 10 m. Compared with the data from 1982, the glacier temperature has risen in the ablation zone in recent decades.  相似文献   

7.
Glaciers and snow are major constituents of solid water bodies in mountains; they can regulate the stability of local water sources. However, they are strongly affected by climate change. This study focused on the Tianshan Mountains, using glacier and snow datasets to analyse variations in glaciers, snow, water storage, and runoff. Three typical river basins(Aksu, Kaidou, and Urumqi Rivers) were selected to interpret the impacts of glacier and snow changes on regional water resources in the Tianshan Mountains. The results exhibited a nonlinear functional relationship between glacial retreat rate and area, demonstrating that small glacial retreat is more sensitive under climate change. Further, the glacial retreat rate at the low-middle elevation zone was seen to be faster than that at the high elevation zone. The regional average terrestrial water storage(TWS) decrease rate in the Tianshan Mountains was –0.7±1.53 cm/a during 2003–2015. The highest TWS deficit region was located in the central part of the Tianshan Mountains, which was closely related to sharp glacial retreats. The increases in glacier and snow meltwater led to an increase in runoff in the three typical river basins, especially that of the Aksu River(0.4×10~8 m~3/a). The decreasing and thinning of areas, and increasing equilibrium line altitude(ELV) of glaciers have been the major causes for the decrease in runoff in the three river basins since the mid-1990 s. Therefore, the results reveal the mechanisms causing the impacts of glaciers and snow reduction in mountains on regional water resources under climate change, and provide a reference for water resources management in the mountainous river basins.  相似文献   

8.
Large amounts of ground ice are born with permafrost on the Qinghai-Tibet Plateau.Degradation of permafrost resulted from the climate warming will inevitably lead to melting of ground ice.The water released from the melting ground ice enters hydrologic cycles at various levels,and changes regional hydrologic regimes to various degrees.Due to difficulties in monitoring the perma-frost-degradation-release-water process,direct and reliable evidence is few.The accumulative effect of releasing water,however,is remarkable in the macro-scale hydrologic process.On the basis of the monitoring results of water-levels changes in some lakes on the Qinghai-Tibet Plateau,and combined with the previous results of the hydrologic changing trends at the regional scale,the authors preliminarily discussed the possibilities of the degrading permafrost on the Qinghai-Tibet Plateau as a potential water source during climate warming.  相似文献   

9.
Studying the response to warming of hydrological systems in China’s temperate glacier region is essential in order to provide information required for sustainable development.The results indicated the warming climate has had an impact on the hydrological cycle.As the glacier area subject to melting has increased and the ablation season has become longer,the contribution of meltwater to annual river discharge has increased.The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year.Seasonal runoff variations are dominated by snow and glacier melt,and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin.The increase amplitude of runoff in the downstream region of the glacial area is much stronger than that of precipitation,resulting from the prominent increase of meltwater from glacier region in two basins.Continued observations in the glacierized basins should be undertaken in order to monitor changes,to reveal the relationships between climate,glaciers,hydrology and water supplies,and to assist in maintaining sustainable regional development.  相似文献   

10.
The ice shelves in the northern Antarctic Peninsula are highly sensitive to variations of temperature and have therefore served as indicators of global warming. In this study,we estimate the velocities of the ice shelves in the northern Antarctic Peninsula using co-registration of optically sensed images and correlation module(COSI-Corr) in the Environment for Visualizing Images(ENVI) based on Moderate Resolution Imaging Spectroradiometer(MODIS) images during 2000–2012,from which we conclude that the ice flow directions generally match the peninsulas pattern and the crevasse,ice flows mainly eastward into the Weddell Sea. The spatial pattern of velocity field exhibits an increasing trend from the western grounding line to the maximum at the middle part of the ice shelf front on Larsen C with a velocity of approximately 700 ma–1,and the velocity field shows relatively higher values in its southerly neighboring ice shelf(e.g. Smith Inlet). Additionally,ice flows are relatively quicker in the outer part of the ice shelf than in the inner parts. Temporal changes in surface velocities show a continuous increase from 2000 to 2012. It is worth noting that,the acceleration rate during 2000–2009 is relatively higher than that during 2009–2012,while the ice movement on the southern Larsen C and Smith Inlet shows a deceleration from 2009 to 2012.  相似文献   

11.
Measurement of ice velocities of the Antarctic glaciers is very important for studies on Antarctic ice and snow mass balance. The polar area environmental change and its influences on the global environment. Conventional methods may be used for measuring the ice velocities, but they suffer from severe weather conditions in the Polar areas. Use of satellite multi-spectral and muki-temporal images makes it easier to measure the velocities of the glacier movements. This paper discusses a new method for monitoring the glacial change by means of multi-temporal satellite images. Temporal remotely sensed images in the Ingrid Christensen coast were processed with respect to geometric rectification, registration and overlay, The average ice velocities of the Polar Record Glacier and the Dark Glacier were then calculated, with the changing characteristics analyzed and evaluated. The advantages of the method reported here include promise of all-weather operation and potentials of dynamic monitoring through suitabl  相似文献   

12.
Timo Vihma 《极地研究》2008,19(2):108-122
Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI).Attention was paid to the impact of albedo on snow and sea ice mass balance,effect of snow on total ice mass balance,and the model vertical resolution. The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project.The HIGHTSI control run reasonably reproduced the observed snow and ice thickness.A number of albedo schemes were incorporated into HIGHTSI to study the feedback processes between the albedo and snow and ice thickness.The snow thickness turned out to be an essential variable in the albedo parameterization.Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature.The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.  相似文献   

13.
There is growing concern over the effects of climate change on glacier melt and hydrology. In this article, we used two natural small-scale basins, Tuotuo River and Buqu River in the source region of the Yangtze River, China, to show the impacts of glacier melt on stream flow. Changes in the extent of glaciers and ice volume in 1970, 1992 and 2009 are evaluated using remote sensing images. Changes to the glacier surface area over the same time interval are estimated through the delineation of glacier outlines and positions using Landsat TM/ETM+ imagery. By 2009, the glacier surface area had decreased by 20.83% and 34.81% of the 1970 values in Tuotuo River and Baqu River basins respectively. The total meltwater supply in each basin is estimated to be 2.56×10^9 m^3/yr and 1.24×10^9 m^3/yr respectively. Mass balance calculations show that glaciers in the study area suffered a constant mass loss of snow and ice, accumulatively approximately -24 m over the past 40 years. The annual and summer stream flow tended to increase in Tuotuo River basin from 1970 to 2009 while a negative trend of change was shown in Buqu River basin during 1970-1986. Glaciers became shorter, narrower and thinner under the effect of atmospheric warming. Streamflow increase has been recorded at Tuotuo River station in response to increased glacier and permafrost melt. However, streamflow decrease has been recorded at Yanshiping station on Buqu River, where glacier melt has lagged behind atmospheric warming. These results show a close but variable linkage among climate change, glacier melting and water resources in the source region of the Yangtze River.  相似文献   

14.
Based on various data,it can be concluded that eight monsoonal temperate glaciers in China were in stationary or ad-vancing between 1900s~1930s and 1960s~1980s,and were in retreating during 1930s~1960s and 1980s~present under the background of climate warming.The total glacier area has reduced by 3.11 km2 with a mean front altitude rise of 3.2 m/yr and 4 glaciers have disappeared in Mt.Yulong during 1957~1999.Mass balance records indicated that glaciers had suf-fered a constant mass loss of snow and ice during the last several decades,and the accumulated mass balance in Hailuogou basin in Mt.Gongga was 10.83 m water equivalent in the past 45 years with a annual mean value of-0.24 m,and the value at Baishui glacier No.1 was-11.38 m water equivalent in the past 52 years with-0.22 m/yr.The inverse variation between mass balance and temperature in China and the Northern Hemisphere reflected that climate warming is mainly corresponding to constant ice and snow mass loss in the past 50 years.The change of the glaciers’ surface mor-phology has occurred since the 1980s,such as enlargement of glacier-lake and ice falls,resulted from the accelrative cli-mate warming.  相似文献   

15.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains.A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau,China.We obtained the precipitation from the ice core net accumulation during 1960-2006,and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau.Results showed that during 1960-2006,the precipitation in the high mountains showed firstly an increasing trend,while during 1980 to 2006 it showed an obvious decreasing trend.Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei,and the correlation coefficient was 0.619(P<0.001).However,the precipitation in the high mountain was about 3 times more than that of the lower mountain.The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period,tree-ring reconstructed precipitation,the measured data of multiple meteorological stations in the northeastern Tibetan Plateau,and also the changes of adjacent PDSI drought index.Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO,which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

16.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory(SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km~2 and an ice volume of ~84.48 km~3 from 2005 to 2010. While most glaciers are small(85.66% are 1.0 km~2), some larger ones(12.74% in the range 1.0–5.0 km~2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12(20.42 km~2) located on the north slope of the Daxue Range is the only glacier 20 km~2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers(760.96 km~2) and 1192 glaciers(836.85 km~2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km~2(–20.88%) and 21.63 km~3(–20.26%), respectively. Glaciers with areas 1.0 km~2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

17.
LiJuan M  Yong Luo  DaHe Qin 《寒旱区科学》2012,4(2):0093-0106
Based on remote sensing snow water equivalent (SWE) data, the simulated SWE in 20C3M experiments from 14 models attending the third phase of the Coupled Models for Inter-comparison Project (CMIP3) was first evaluated by computing the different percentage, spatial correlation coefficient, and standard deviation of biases during 1979–2000. Then, the diagnosed ten models that performed better simulation in Eurasian SWE were aggregated by arithmetic mean to project the changes of Eurasian SWE in 2002–2060. Results show that SWE will decrease significantly for Eurasia as a whole in the next 50 years. Spatially, significant decreasing trends dominate Eurasia except for significant increase in the northeastern part. Seasonally, decreasing proportion will be greatest in summer indicating that snow cover in warmer seasons is more sensitive to climate warming. However, absolute decreasing trends are not the greatest in winter, but in spring. This is caused by the greater magnitude of negative trends, but smaller positive trends in spring than in winter. The changing characteristics of increasing in eastern Eurasia and decreasing in western Eurasia and over the Qinghai-Tibetan Plateau favor the viewpoint that there will be more rainfall in North China and less in the middle and lower reaches of the Yangtze River in summer. Additionally, the decreasing rate and extent with significant decreasing trends under SRES A2 are greater than those under SRES B1, indicating that the emission of greenhouse gases (GHG) will speed up the decreasing rate of snow cover both temporally and spatially. It is crucial to control the discharge of GHG emissions for mitigating the disappearance of snow cover over Eurasia.  相似文献   

18.
Retrieval of oxalate from snow and ice provides information on past environmental changes. In recent years, records of organic acids in middle-and low-latitude glaciers have attracted the attention of researchers globally. In this study, we analyzed oxalates in an ice core from Laohugou Glacier No. 12 on the Qilian Mountains at an elevation of 5,040 m a.s.l. in2006. Average oxalate concentration was 18.5±2.4 ng/g over the prior 46 years. Oxalate values showed a significantly increasing trend since 1985. From 1985 to 1995, oxalate concentrations had large fluctuations, peaking in about 1987 and exhibiting a slightly decreasing trend since 1995. The result shows that the abrupt increase of oxalate concentration in the ice core since the mid-1980 s reflects atmospheric environmental pollution by human and industrial activities.  相似文献   

19.
A 6-m ice core was recovered in 2004 from the Naimona'Nyi Glacier, the middle Himalayas. Empirical orthogonal function (EOF) analysis on the major ion reveals that EOF1 represents the variations of majority of ions which may be originated from crustal aerosols. Comparing the calcium concentrations from the Naimona'Nyi with these from Dasuopu, East Rongbuk and Guliya ice cores, it is observed that calcium, a good indicator of the input of crustal aerosol in snow, concentrates mostly in the Guliya ice core located on the northern Tibetan Plateau, and gradually decreases from west to east in the Himalayas.  相似文献   

20.
Glaciers are a reliable freshwater resource in arid regions of West China and the vulnerability of its changes is closely related to regional ecosystem services and economic sustainable development. Here, we took the Qilian Mountains as an example and analyzed the spatiotemporal characteristics of glacier changes from 1998 to 2018, based on remote sensing images and the Second Chinese Glacier Inventory. We estimated the basic organizational framework and evaluation index system of glacier change vulnerability from exposure, sensitivity and adaptability, which covered the factors of physical geography, population status and socio-economic level. We analyzed the spatial and temporal evolutions of glacier change vulnerability by using the vulnerability evaluation model. Our results suggested that:(1) Glacier area and volume decreased by 71.12±98.98 km2 and 5.59±4.41 km3, respectively, over the recent two decades, which mainly occurred at the altitude below 4800 m, with an area shrinking rate of 2.5%. In addition, glaciers in the northern aspect(northwest, north and northeast) had the largest area reduction. Different counties exhibited remarkable discrepancies in glacier area reduction, Tianjuan and Minle presented the maximum and minimum decrease, respectively.(2) Glacier change vulnerability level showed a decreasing trend in space from the central to the northwestern and southeastern regions with remarkable differences. Vulnerability level had increased significantly over time and was mainly concentrated in moderate, high and extreme levels with typical characteristics of phases and regional complexity. Our study can not only help to understand and master the impacts of recent glacier changes on natural and social aspects but also be conducive to evaluate the influences of glacier retreat on socio-economic developments in the future, thus providing references for formulating relevant countermeasures to achieve regional sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号