首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以三峡库区箭穿洞危岩体为例,对涉水厚层危岩体的变形破坏模式和防护措施进行了研究。根据现场调查和长期监测数据可知,干湿循环作用下基座岩体的劣化是加速箭穿洞危岩体变形破坏的主导因素,并判定其破坏模式为基座滑移式崩塌。在此基础上,将危岩体的防护治理定为两部分,分别是基座软弱岩体的补强加固,以及中上部危岩体的锚索加固。通过数值模拟对防护前后危岩体的位移场以及应力场进行了分析,结果表明危岩体上部的锚索加固能够有效控制岩体的变形,基座补强能够有效控制危岩体的最大剪应力,综合防护可以显著提高箭穿洞危岩体的稳定性。该防护措施的理念及方法,可以为库区涉水危岩体的治理提供重要的参考价值。  相似文献   

2.
自三峡库区蓄水以来,岸坡消落带岩体劣化趋势明显,加速了岩质岸坡向欠稳定和不稳定发展,潜在崩塌涌浪灾害威胁长江航道安全。以三峡库区板壁岩为例,采用抗剪强度折减法分析在岩体劣化工况下危岩体的破坏过程与长期稳定性。结果表明:在自然工况下,板壁岩危岩体处于稳定状态;在库水+岩体劣化工况下,中部锁固段处拉应力集中,拉张裂缝逐步向顶部主控裂缝及底部基破碎带延展并相互贯通,可能发生滑移-剪切破坏;在库水+岩体劣化+强降雨极端工况下,约40个水文周期后,岩体强度下降30%,板壁岩危岩体的稳定性系数降至约1.14,处于欠稳定状态,建议进行工程防治,提高危岩体稳定性,以保障航道安全。研究结果可为三峡库区板壁岩及类似危岩体的防灾减灾工作提供科学合理的依据。  相似文献   

3.
三峡水库周期性水位变动造成了部分消落带岩体劣化,其具体表现为强度下降和宏观裂隙增多,这使得一些柱状危岩体被发现或需要重新认识,包括箭穿洞、曲子滩和棺木岭等危岩体。这些柱状危岩体三维边界清晰,由"硬-相对软"的岩性组成,主要受控于相对软的硬岩基座岩体。采用伪时间增量的方式模拟岩石强度的时间相关劣化效应,数值分析了多水位变动周期下棺木岭危岩体裂缝和破坏区的扩展情况。危岩体初始破坏区主要集中在基座趾部岩体。随着水位变动周期增多,裂缝和破坏区由危岩体踵部和趾部相对扩展,破坏区主要集中在危岩体踵部。10次水位周期计算所得破坏区比相同时步、没有劣化效应时增加了近4倍,且以拉张破坏为主。周期性水位变动造成的岩体劣化强烈加快了柱状危岩体演化进程,同时影响了其破坏机理。从数值分析来看,棺木岭危岩体的变形破坏模式从原来的倾倒为主将转为以压溃崩塌为主。水位变动条件下岩石强度的时间相关劣化效应及其对柱状危岩体的影响研究将为三峡水库危岩体防治提供重要技术支撑。  相似文献   

4.
以重庆巫山箭穿洞近水平巨厚层危岩体为例,通过地质环境条件、基座位移及应力监测数据等分析,总结归纳了危岩体目前的变形和受力状态,发现危岩体的强度仍在持续降低。同时,运用FLAC2D模拟手段,设置了初始天然、初始饱和、临滑、失稳4种模拟工况,研究了危岩基座岩体及泥质条带灰岩层面对危岩体阻滑规律。研究结果表明,基座泥质条带灰岩层强度的持续降低将会使得危岩体处于临滑乃至失稳状态。该稳定性分析也为进一步的防治设计提供了依据。   相似文献   

5.
有限元/离散元耦合分析方法(FEM/DEM法)可计算连续介质的小变形,也可在新生裂缝并在裂隙间开展大变形计算。文章以位于重庆市巫山县长江左岸的箭穿洞柱状危岩体为例,分析了箭穿洞危岩体可能的破坏过程。分析表明:柱状危岩体的基座处于应力集中状态,既有拉应力集中区也有压应力集中区,应力集中造成柱状危岩体的基座附近边界岩体易破坏。应力集中新生了裂隙,裂隙的延展导致了危岩体的解体和最终的破坏。FEM/DEM方法预演了柱状危岩体压致拉裂的裂隙网络形成和破碎岩体运动过程。FEM/DEM对帮助分析大小变形混合的斜坡变形十分有利,是未来数值模拟的发展方向之一。  相似文献   

6.
三峡水库周期性蓄水改变了岸坡内的地下水渗流场和应力场,降低岩土体的剪切强度,对库岸边坡、岩体稳定性影响很大。以往库区岸坡岩体形变监测主要通过设置固定点进行观测,难以发现岩体整体变化情况。地面三维激光扫描方法能获取岩体整体表面厘米精度的点云数据,具有无需接触目标、获取速度快、精度高等特点,非常适合库区高陡危岩体表面三维形变监测。以巫山箭穿洞危岩体为例,采用地面三维激光扫描方法对箭穿洞危岩体进行了为期2年(2017—2018年)共3期监测,以第一期观测目标周围稳定岩体数据为基准,对数据进行重叠点云迭代配准,点云配准精度优于±2.7 cm。针对箭穿洞危岩体在观测时段内的变化情况,构建危岩体区域的基准不规则三角网模型,以点到基准面最近距离法结合危岩体变化区间分析其变形。通过对比分析箭穿洞危岩体3期观测数据,发现相对于2017年,2018年箭穿洞危岩体左侧岩体有变形趋势;在库区蓄水阶段,危岩体局部多处存在明显凹陷变化,局部因蓄水影响发生约?0.03~?0.07 m变形。结果证明三维激光扫描技术在库岸高陡边坡形变监测中的有效性,为三峡库区高陡危岩体形变监测及地质灾害防治工作提供了参考。  相似文献   

7.
三峡库区龙门寨危岩体崩塌产生涌浪研究   总被引:1,自引:1,他引:0  
长江两岸高耸的危岩体对航道、沿岸居民带来巨大安全隐患。大宁河属于长江一级支流,龙门寨危岩体位于大宁河上,距离巫山县城仅1 km。利用FLOW-3D软件,模拟了145 m、175 m两种水位工况下龙门寨危岩体崩塌产生涌浪过程和涌浪传播过程。模拟结果表明,涌浪在145 m水位工况下最大浪高约为17.9 m,175 m水位工况下最大浪高约为11.6 m;在巫山县的五个码头处,两种水位工况最大涌浪爬高分别约为10.9 m、3.8 m;根据涌浪高度,对大宁河进行危险分区,145 m水位工况下极高危险区长度约4.4 km,很高危险区长度约1.9 km;175 m水位工况下极高危险区长度约3.0 km,很高危险区长度约1.0 km。研究结果有助于防控龙门寨危岩体潜在涌浪灾害危害,保障大宁河航道和巫山县码头安全,同时也为三峡库区滑坡涌浪灾害提供了预警依据。   相似文献   

8.
棺木岭危岩体为三峡库区新发现的崩塌隐患点,呈不规则塔柱状,平均高约50 m,宽约50 m,厚约20 m,体积约5×104m3。本文基于野外地质调查,在分析棺木岭危岩体发育特征及形成原因的基础上,对其形成机制及可能破坏模式进行初步研究。调查和分析表明:陡峻地形、上硬下软的岩体介质结构、构造裂隙切割是危岩形成的主要原因,水库蓄水和降雨是危岩体破坏的外在激发因素,尤其是库水位周期性涨落加剧了基座岩体的破坏,加速了危岩体形成演化;其成因机制为下伏软弱基座在上覆硬岩巨大自重荷载作用下压裂破坏,引起山体变形开裂形成,危岩体可能破坏模式为倾倒破坏或座滑破坏;其形成演化过程可以分为以下4个阶段:卸荷裂隙形成阶段、软弱基座差异沉降与裂隙扩展阶段、水库蓄水加剧裂隙贯通与基座岩体碎裂化阶段、崩塌与堆积阶段。  相似文献   

9.
自三峡库区2009年蓄水至175 m以来,库水位常年在高程145-175 m间波动,形成了高差30 m的水位变动带(消落带)。由于该变动带上岩体长期在饱和浸泡-风干曝晒的循环作用下,其物理力学强度不断减弱,于是大量的新生危岩和滑坡塌岸相继形成,此类地质灾害不仅点多面广,且破坏频率高,诱发因素甚多。本文以黄南背西危岩体为典型案例,基于影像资料、原位测试数据以及离散元数值模型深入分析了该危岩体未来失稳的破坏模式和变形成因机理,重点对该危岩体的应力场、形变场和基座岩体受水位作用影响展开研究。研究表明黄南背西危岩体发生失稳破坏的三种因素:1)底部岩体出现压溃破坏,2)底部破碎岩体受水影响劣化加剧,3)基座角砾岩岩体遇水水解。危岩体发生破坏将从其底部岩体出现压溃开始,上部岩体随后下错滑移,失稳岩体发生倾倒、滑移和坠落的复合型破坏。  相似文献   

10.
2011年10月20日晚7时,三峡库区巫山县两坪乡望霞村长江航段多次发生危岩垮塌,造成航道堵塞,上下游2000多名旅客滞留。望霞危岩地处巫山县两坪乡同心村,位于长江巫峡峡口长江北岸,高程约1050~1250m,危岩体临空面为绝壁,东西长100m、南北宽40m,高80~100m,体积约40×104 m3,  相似文献   

11.
三峡库区地质环境复杂,受库水位升降作用影响岩溶岸坡消落区岩体劣化,加快了岸坡不稳定性发展。文章以三峡库区黄岩窝危岩体为研究对象,现场详查了消落带岩体劣化现象,计算了危岩体的长期稳定性数值。研究表明:黄岩窝危岩体存在垂直岩溶带和底部渗流带;底部渗流带处于消落带部位,存在软弱区和岩体劣化现象。考虑库水位和暴雨时岩溶水压岸坡稳定性系数为1.69,危岩体处于稳定状态。随着岩体劣化导致底部软弱区岩体参数不断下降,稳定性系数年均下降约0.01。预测在约57个周期性水位变动之后黄岩窝危岩体变为欠稳定状态,62个周期后发生失稳破坏。危岩体的破坏模式是顶部出现岩块倾倒崩落和底部软弱区贯通之后发生滑移的复合式破坏,与野外调查定性认识基本一致。研究结果对库区类似的地质灾害预警和防治有着重要的指导意义。  相似文献   

12.
对迪那某桥梁旁的危岩体进行勘查,在分析其地质环境条件下查明了该处危岩体的发育分布特征、裂隙发育特征和其形成的主导因素和诱发因素,在现场勘查和室内试验取得的岩体物理力学参数的基础上对其在天然状态、暴雨状态和地震状态下以及不同位置后缘裂隙进行了数值模拟计算,定量地对该危岩体进行了稳定性评价。结果显示:在目前状态下距陡崖面35m范围内处于欠稳定状态,距陡崖面42m处为基本稳定状态,在暴雨工况及地震工况下,距陡崖面35m范围内处于不稳定-欠稳定状态,距陡崖面42.0m处为基本稳定-不稳定状态。并根据研究结果对该危岩体提出了预应力锚索加固和削坡加载、加桩抗滑的防治对策。  相似文献   

13.
文章以某滑塌式危岩体为例建立了危岩体的有限元计算模型,分析了影响危岩体稳定性的因素,讨论了危岩体开裂深度对危岩体稳定性的影响及危岩裂缝开展的破坏演化机制,并结合规范采用理正软件对本文提出的捆绑法治理滑塌式危岩体的可行性进行了验证。稳定性分析的结果表明:采用捆绑法治理后,危岩体在自然工况、暴雨工况和地震工况下的稳定性系数都能保证危岩体处于稳定状态,为危岩体的防治提供了一种新的思路。  相似文献   

14.
为了分析四川省巴中地区某危岩体稳定性,在对其结构特征及变形破坏模式较系统分析基础上,提出了该危岩体稳定性的影响因素,确定了改危岩体的崩塌类型,建立了主断面的工程地质模型,并采用相关公式计算了该危岩体在自然、地震和暴雨3种不同工况下的稳定系数。结果表明自然和地震工况下该危岩体处于稳定状态,但暴雨工况下属于欠稳定。研究结果对该危岩体的防治将提供较可靠的参考依据。  相似文献   

15.
高丙丽  张金厚  张路青 《地球科学》2022,47(12):4417-4427
地震是高位危岩体失稳崩塌主要诱因之一,而结构面强度与变形特性对高位危岩体稳定性起关键控制性作用.为研究地震作用下高位危岩体动力失稳机制,基于数值试验研究结构面震动劣化效应,并利用极限平衡法对高位危岩体动力稳定性进行研究.研究结果表明,结构面的峰值抗剪强度随着循环剪切次数的增加而减小,且减小幅度愈来愈小,最终趋于稳定值;随着起伏角度增大而增大,且增大幅度随着循环剪切次数的增加而减小;并在同一起伏角度下,随着循环剪切幅值的增大而减小.最后,基于回归分析法建立结构面震动劣化数学模型,并提出一种考虑结构面震动劣化的高位危岩体动力稳定性分析方法.其研究成果有助于丰富高位危岩体动力稳定性方面的基础理论研究,具有重要的理论意义和工程参考价值.   相似文献   

16.
王宏青 《云南地质》2023,(4):511-518
本文对普安县小山坡村蜂子岩组后侧山体破碎发育的危岩体发展变化趋势进行预测分析,结合变形破坏模式,采用赤平投影定性分析与定量计算相结合方法分析研究区危岩体稳定性,天然工况下4处危岩体处于基本稳定到稳定状态,暴雨工况下为欠稳定到失稳破坏状态。根据危岩体基本特征,推荐采用被动防护网工程防治方案。  相似文献   

17.
三峡库区水位消落带岩体劣化松动使得部分岸坡加速朝不稳定方向演化,给溶蚀岩体岸坡带来了工程灾变效应问题.本文提出了利用高程175 m附近区域的岩体替代未受蓄水影响的岩体的"比拟法",统计分析岩体劣化情况.定义、改进和统计了岩体劣化变量Det、岩体体积节理数增量△Jv和地质强度指标变化值ΔGSI.通过对库区10个典型溶蚀岩体的劣化程度及地质强度指标的研究,提出溶蚀岩体劣化程度的量化指标,并建立其与地质强度指标的相关关系.岩体劣化造成了地质强度指标的下降;强烈劣化时,ΔGSI≤-4.0;ΔGSI与Det满足指数函数关系,ΔGSI和△Jv满足线性负相关.提出了岩体劣化随时间演化的三种模式,其中两种模式最终会进入加速劣化状态;岩体结构经由两条路径演变为碎裂结构.同时,讨论了岩体劣化与岸坡亚稳定阶段的关系.研究成果为系统开展三峡库区峡谷段消落带岩体劣化程度勘查、监测和风险防控提供了新的方法.  相似文献   

18.
以九寨沟景区某崩塌灾害点为例,通过野外地质调查,查明崩塌灾害点的危岩体特征和类型。系统分析了结构特征及变形破坏模式以及稳定性的影响因素。通过传递系数法计算了两处危岩带在天然、地震和暴雨3种工况下的稳定性系数,计算结果显示两处危岩带在地震工况下为稳定状态,天然和暴雨工况下呈欠稳定状态。采用数值模拟软件Rocfall模拟该崩塌点落石运动特征。根据计算结果,对该处崩塌点的防治提供了建议。  相似文献   

19.
库区水位变动是导致危岩失稳主要原因之一。采用Geo-Studio软件SLOPE/W及SIGMA/W模块对板壁岩W1危岩体进行有限元数值计算,在是否考虑消落带区域岩体劣化的因素下,将数值计算划分为两种工况,并计算得到不同工况下145m水位及175m水位下典型剖面的稳定性系数以及应力、应变、位移分布云图,为该危岩带防灾减灾提供理论依据。其成果为库区危岩防治和预测提供一定的参考。  相似文献   

20.
以九寨沟景区某崩塌灾害点为例,通过野外地质调查,查明崩塌灾害点的危岩体特征和类型。系统分析了结构特征及变形破坏模式以及稳定性的影响因素。通过传递系数法计算了两处危岩带在天然、地震和暴雨3种工况下的稳定性系数,计算结果显示两处危岩带在地震工况下为稳定状态,天然和暴雨工况下呈欠稳定状态。采用数值模拟软件Rocfall模拟该崩塌点落石运动特征。根据计算结果,对该处崩塌点的防治提供了建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号