首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北宋中期耕地面积及其空间分布格局重建(英文)   总被引:3,自引:1,他引:2  
To understand historical human-induced land cover change and its climatic effects, it is necessary to create historical land use datasets with explicit spatial information. Using the taxes-cropland area and number of families compiled from historical documents, we esti-mated the real cropland area and populations within each Lu (a province-level political region in the Northern Song Dynasty) in the mid-Northern Song Dynasty (AD1004-1085). The es-timations were accomplished through analyzing the contemporary policies of tax, population and agricultural development. Then, we converted the political region-based cropland area to geographically explicit grid cell-based fractional cropland at the cell size of 60 km by 60 km. The conversion was based on calculating cultivation suitability of each grid cell using the topographic slope, altitude and population density as the independent variables. As a result, the total area of cropland within the Northern Song territory in the 1070s was estimated to be about 720 million mu (Chinese area unit, 1 mu = 666.7 m2), of which 40.1% and 59.9% oc-curred in the north and south respectively. The population was estimated to be about 87.2 million, of which 38.7% and 61.3% were in the north and south respectively, and per capita cropland area was about 8.2 mu. The national mean reclamation ratio (i.e. ratio of cropland area to total land area; RRA hereafter for short) was bout 16.6%. The plain areas, such as the North China Plain, the middle and lower reaches of the Yangtze River, Guanzhong Plain, plains surrounding the Dongting Lake and Poyang Lake and Sichuan Basin, had a higher RRA, being mostly over 40%; while the hilly and mountainous areas, such as south of Nanling Mountains, the southwest regions (excluding the Chengdu Plain), Loess Plateau and south-east coastal regions, had a lower RRA, being less than 20%. Moreover, RRA varied with topographic slope and altitude. In the areas of low altitude (≤250 m), middle altitude (250-100 m) and high altitude (1000-3500 m), there were 443 million, 215 million and 64 million mu of cropland respectively and their regional mean RRAs were 27.5%, 12.6% and 7.2% respectively. In the areas of flat slope, gentle slope, medium slope and steep slope, there were 116 million, 456 million, 144 million and 2 million mu of cropland respectively and their regional mean RRAs were 34.6%, 20.7%, 8.5% and 2.3% respectively.  相似文献   

2.
Geographically explicit historical land use and land cover datasets are increasingly required in studies of climatic and ecological effects of human activities. In this study, using historical population data as a proxy, the provincial cropland areas of Qinghai province and the Tibet Autonomous Region(TAR) for 1900, 1930, and 1950 were estimated. The cropland areas of Qinghai and the TAR for 1980 and 2000 were obtained from published statistical data with revisions. Using a land suitability for cultivation model, the provincial cropland areas for the 20 th century were converted into crop cover datasets with a resolution of 1 × 1 km. Finally, changes of sediment retention due to crop cover change were assessed using the sediment delivery ratio module of the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST) model(version 3.3.1). There were two main results.(1) For 1950–1980 the fractional cropland area increased from 0.32% to 0.48% and land use clearly intensified in the Tibetan Plateau(TP), especially in the Yellow River–Huangshui River Valley(YHRV) and the midstream of the Yarlung Zangbo River and its two tributaries valley(YRTT). For other periods of the 20 th century, stability was the main trend.(2) For 1950–1980, sediment export increased rapidly in the Minhe autonomous county of the YHRV, and in the Nianchu River and Lhasa River basins of the YRTT, which means that sediment retention clearly decreased in these regions over this period. The results of this assessment provide scientific support for conservation planning, development planning, or restoration activities.  相似文献   

3.
Yangshao culture is the most important mid-Holocene Neolithic culture in the Yellow River catchment,and thus,a study on the impact of human activities on the environment is important.In the current study,the distribution pattern of the cultivated land in late Yangshao culture is reconstructed using GIS tool and site domain analysis(SDA).The results show that the cultivated land during 5.5-5.0 ka BP was mainly distributed in the Weihe River valley,Luohe River valley,northwestern Henan Plain,Fenhe River valley and eastern Gansu region,especially concentrated in the Xi’an-Baoji line of the Weihe River valley.At that time,at least 37,000 km 2 of lands were reclaimed in the middle and lower reaches of the Yellow River,and 132,000 km 2 of lands were affected by agricultural activities.Human activities had become the driving force of land use/land coverage.Charcoal records indicate that the ancestors of Yangshao culture burnt forests for reclamation,leading to the decrease of arbor pollen at 5 ka BP in core areas of the Yangshao culture.The areas that were significantly affected by human activities accounted for 3.2% of the Yangshao culture influenced area,while the moderately affected areas accounted for 20.1% of Yangshao culture influenced area.Meanwhile,92% of the land areas on the edge and outside of the Yangshao culture influenced area were not affected by human activities.The arbor pollen in these areas did not decrease until 4.0 ka BP.  相似文献   

4.
To understand historical human-induced land use/cover change(LUCC) and its climatic effects,it is essential to reconstruct historical land use/cover changes with explicit spatial information. In this study,based on the historically documented cropland area at county level,we reconstructed the spatially explicit cropland distribution at a cell size of 1 km × 1 km for the Songnen Plain in the late Qing Dynasty(1908 AD). The reconstructions were carried out using two methods. One method(hereafter,referred to as method I) allocated the cropland to cells ordered from a high agricultural suitability index(ASI) to a low ASI,but they were all within the domain of potential cropland area. The potential cropland area was created by excluding natural woodland,swamp,water bodies,and mountains from the study area. The other method(hereafter,method II) allocated the cropland to cells in the order from high ASI to low ASI within the domain of cropland area in 1959. This method was based on the hypothesis that the cropland area domain in 1959 resulted from enlargement of the cropland area domain in 1908. We then compared these two reconstructions. We found that the cropland distributions reconstructed by the two methods exhibit a similar spatial distribution pattern. Both reconstructions show that the cropland was mostly found in the southern and eastern parts of the Songnen Plain. The two reconstructions matched each other for about 68% of the total cropland area. By spatially comparing the unmatched cropland cells of the two reconstructions with the settlements for each county,we found that unmatched cropland cells from method I are closer to settlements than those from method II. This finding suggests that reconstruction using method I may have less bias than reconstruction with method II.  相似文献   

5.
河西走廊张掖绿洲土地利用/土地覆盖变化特征   总被引:8,自引:0,他引:8  
Taking two false color composite Landsat 5 TM(Thematic Mapper)images of band 4,3,2taken in 1995 and 2000 as data resources,this paper carried out study on LUCC of Zhanye oasis in recent five years by interpretation according to land resources classification system of 1∶00,000 Resources and Environmental Database of the Chinese Academy of sciences.The results show that great changes have taken place in landuse/landcover in Zhangye oasis since 1995:(1)Changes of landuse structure show that cropland and land for urban construction and built-up area increased,on the contrary,water area and grassland decreased.These changes reflect the deterionration of arrangement of water and land resources between the upper and lower reaches of the Heihe River.(2)Regional differences of landuse/landcover are evident,characterized by following aspects:in Sunan County located in Qilian Mountain area,unused land and grassland decreased,but cropland and land for urban construction and built-up area inreased.In Minle and Shandan counties located in foothills,unused land,warer area and cropland decreased,but grassland and land for urban construction and built-up area increased.In Zhangye City,Linze County and Gaotai County located in plain area of the middle reaches of the Heihe River,unused land,warer area and grassland decreased,while woodland,cropland and land for urban construction and buile-up area increased.  相似文献   

6.
The land fallow policy was adopted by central and local governments to encourage the abandonment of water-intensive crops, such as winter wheat, in groundwater over-exploited areas. At the same time, since the 1990 s, many households in the North China Plain(NCP) have chosen to replace the winter wheat and summer maize double-cropping system with the spring maize single-cropping system. Therefore, it is crucial to identify target land parcels for winter wheat abandonment and to design reasonable and proper standards for ecological compensation prior to the implementation of the land fallow policy in the NCP. In this study, multi-level logit models were used with household survey data in order to detect determinants across land parcel, household and village levels on household cropping system decisions; the opportunity costs for winter wheat abandonment were also calculated using cost–benefit analysis. The results show that:(1) land quality and irrigation condition at parcel level are two essential elements influencing household cropping system decisions. Nearly 70% of the total area of poor land and more than 90% of the total area of unirrigated land has suffered winter wheat abandonment. Target land parcels for the land fallow policy should be those that are irrigated and of high quality.(2) There were no significant differences between net profits from spring maize and summer maize under similar farming conditions, and the opportunity cost for winter wheat abandonment should be equal to the net profit of winter wheat.(3) The primary purpose of the land fallow policy is to induce groundwater recovery and restoration as a preliminary stage. A higher level of 350 yuan/mu is recommended as subsidy for ecological compensation at this stage. Later, the primary purpose of the policy should be a transition to a balance between exploitation and supplementation of water resources, and a lower level of 280 yuan/mu is recommended as a subsidy at this stage.  相似文献   

7.
Changes in rice production in Southern China are crucial to national food security. This study employed Landsat images to map the distributions of paddy rice-cropping systems in Southern China in 1990 and 2015. The impact of rice multiple cropping index changes on grain production capacity was then evaluated. Three important results were obtained for the 1990 to 2015 study period. First, the multiple cropping index for rice decreased from 148.3% to 129.3%, and 253.16×10~4 ha of land area was converted from double-cropping to single-cropping rice, termed "double to single". The area with the most dramatic changes is in the Middle-Lower Yangtze Plain. The rice-cropping system distribution in Southern China showed a change from north to south with double-cropping rice shrinking and single-cropping rice expanding. Second, the "double to single" conversion led to a reduction of 6.1% and 2.6% in rice and grain production, respectively. Hunan and Jiangxi Provinces, located in the main rice producing areas, and Zhejiang, which has shown better economic development, exhibited large reductions in rice production due to the "double to single" conversion, all exceeding 13%. Third, the grain production capacity of converted "double to single" paddy fields is equivalent to that of 223.3 × 10~4 ha of newly reclaimed cultivated land, which is 54% of the total newly cultivated land reclaimed through the 2001–2015 land consolidation project. It is also 1.7 times the target goal for newly cultivated land in the national land consolidation plan for 2016–2020. Making full use of the converted "double to single" paddy fields can save 167.44 billion yuan in newly reclaimed cultivated land costs. Therefore, instead of pursuing low-quality new arable land, it is better to make full use of the existing high-quality arable land. Based on these results, the government should change the assessment method for cultivated land balance, and incorporate the sown area increased by improving the multiple cropping index into the cultivated land compensation indicator.  相似文献   

8.
Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM/ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin; (2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China; (3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and (4) effective- ness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use pat- terns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

9.
Land-use/land-cover changes(LUCCs) have links to both human and nature interactions. China's Land-Use/cover Datasets(CLUDs) were updated regularly at 5-year intervals from the late 1980s to 2010, with standard procedures based on Landsat TM\ETM+ images. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as follows. Land-use changes(LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years(1990–2010). The area of cropland change decreased in the south and increased in the north, but the total area remained almost unchanged. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included(1) an accelerated expansion of built-up land in theHuang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin;(2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China;(3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and(4) effectiveness of the "Grain for Green" project in the southern agricultural–pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use patterns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

10.
Based on objective data collected from interviews in typical villages of the Three Gorges Reservoir Area, the present study devised three livelihood scenarios related to rural transformation development: agriculturally dominant livelihood, multiple-type livelihood and non-agriculturally dominant livelihood. Moreover, the present study reports the trend characteristics of nonpoint source pollution load of crop farming in relation to the transformation of dominant livelihood types, and discussed the primary factors which affect livelihood type transformations. Results indicated the following:(1) The current farmland pattern shows a trend of diversification as self-cultivation, cropland transfer and fallow in the sample region. Dynamic characteristics of cultivated land present a special feature that is more "transfer-into" than "transfer-out". Various scales of planting are represented among the various households, according to the following decreasing order: half-labor household non-labor household adequate labor household.(2) The highest pollution loading produced by crop farming occurs in half-labor households while the lowest occurs in non-labor households. With increasing labor, the pollution load per unit area tends to first increase and then decrease within families with enough labor.(3) As the type of livelihood transitions from agriculturally dominant to non-agriculturally dominant, the maximum reduction of total pollution loading produced by the agricultural industry can reach 72.01%. Compared to agriculturally dominant livelihoods, multiple-type livelihoods produce a pollution load reduction yield of 19.61%–29.85%, and non-agriculturally dominant livelihoods reduce the pollution load yield by 35.20%–72.01%. However, the rate of reduction of total nitrogen is not the same as total phosphorus.(4) The non-agricultural characteristics of labor allocation and income promote the transformation from dominant livelihood types to non-agricultural livelihoods, while potential revenue conversion follows a similar trend. In addition, different household types do not display identical conversion rates, according to the following decreasing order: enough labor household half-labor household non-labor household.(5) During rapid urbanization and the building of new industrial systems, the livelihood types of rural households have been further transformed to off-farm household types in the mountainous region; this process will lead to the further reduction of pollution load generated by planting and agriculture. Hence, significant decreases in the planting pollution load necessitate the development of control measures to enhance transformations from agricultural to off-farm livelihoods.  相似文献   

11.
As one of the most critical impact factors of global change, historical land-use change is an indispensable input in climate and environment simulations. To better understand the cropland change in the Guanzhong area, gazetteers, statistics, and survey data were collected as data sources. Methods of registered tax-paying cropland data collection, selection of time points, and data interpolation and calibration were used to reconstruct changes in the cropland area. The cropland area data at the county level were allocated to 1 km×1 km grid cells. The total cropland area in the Guanzhong area was influenced by changes in population, wars, natural disasters, and land-use types, and it fluctuated from 1650 to 2016. From 1780 to 1830, the cropland expanded in the northern and western parts of Guanzhong area, and the cropland in the north of Qinling Mountains increased slightly. The spatial pattern of cropland reached its maximum range in 1980, and the cropland area declined in the whole study area, especially in the cities of Xi'an and Xianyang in 2016. The comparison between HYDE 3.2 and the data obtained in this study showed that the grid cells of HYDE 3.2 exhibit lower values of cropland area fractions in the Guanzhong Basin and higher values in high-altitude areas around the Guanzhong Basin as compared to those in this study.  相似文献   

12.
Using the methods of combining landscape ecology with GIS spatial analysis,this paper analyses the dynamics of the marsh landscape stucture of the Sanjing Plain in the past 20 years,furthermore,taking Fujin County,located in the north of the plain,as an example,analyzes the conversion between marsh and other land use types.It is shown that the marsh in the Sanjiang Plain decreased greatly in the past 20 years,but the trend has begun to reverse,The marsh area decreased by 51.33% from 1980 to 1996,whereas it decreased by 4.19% from 1996 to 2000.The fragmentation of the marsh increased;the number of the patches increased by 326 from 1986 to 1996,whereas it only increased by 18 patches from 1996 to 2000,It is obvious that the speed of patches number diminished and the marsh fragmentation decreased,which shows that the reclamation of the marsh converted from the fragmentation to the brim in a large area of the marsh.The reclaimed marsh has mainly converted to paddy field and dry land .Large area of the marsh.The reclaimed marsh has mainly converted to paddy fiedld and dry land.Large-scale reclamation in the Sanjiang Plain influences its natural environment directly:the climate of the region turns from cold and wet to warm and dry,which makes the marsh both in the low-temperature northern part and in the deeply stagnant eastern part suitable for further agricultural development.  相似文献   

13.
Over the past few decades,built-up land in China has increasingly expanded with rapid urbanization,industrialization and rural settlements construction.The expansions encroached upon a large amount of cropland,placing great challenges on national food security.Although the impacts of urban expansion on cropland have been intensively illustrated,few attentions have been paid to differentiating the effects of growing urban areas,rural settlements,and industrial/transportation land.To fill this gap and offer comprehensive implications on framing policies for cropland protection,this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas,rural settlements,and industrial/transportation land from 1987 to 2010,based on land use maps interpreted from remote sensing imagery.Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China.We find that 42,822 km2 of cropland were converted into built-up land in China,accounting for 43.8% of total cropland loss during 1987–2010.Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000.The contribution of rural settlement expansion decreased;however,rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality.The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions.These changes were closely related to the economic restructuring,urban-rural transformation and government policies in China.Future cropland conservation should focus on not only finding a reasonable urbanization mode,but also solving the "hollowing village" problem and balancing the industrial transformations.  相似文献   

14.
The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

15.
Reconstruction of the spatial pattern of regional habitat quality can revivify the ecological environment background at certain historical periods and provide scientific support for revealing the evolution of regional ecological environmental quality.In this study,we selected 10 driving factors of land use changes,including elevation,slope,aspect,GDP,population,temperature,precipitation,river distance,urban distance,and coastline distance,to construct the CA-Markov model parameters and acquired the land use spatial data for 1975,1980,1985,1990,and 1995 by simulation based on the land use status map for 2010.On this basis,we used the InVEST model to reconstruct the spatial pattern of habitat quality in the study area and conducted classification division and statistical analysis on the computed habitat degradation degree index and the habitat quality index.(1)The results showed that from 1975 to 2010,the habitat degradation degree gradually increased,and the habitat degradation grade spatially presented a layered progressive distribution.Habitat quality presented a constantly decreasing trend.The high-value zones were mainly distributed in the mountainous areas,while the low-value zones were mostly located in built-up areas.During the period of 1975-2010,low-value zones gradually expanded to their surrounding high-value zones,and the high-value zones of habitat quality tended to be fragmented.(2)The spatial-temporal variation characteristics of habitat quality from 1975 to 2010 showed that the regions with low habitat quality were difficult to be restored and mostly maintained their original state;the regions with poor habitat quality,which accounted for 6.40%of the total study area,continued to deteriorate,mainly around built-up areas;the regions with good and superior habitat quality,which accounted for 5.68%of the total study area,were easily converted to regions with bad or poor habitat quality,thus leading to the fragmentation of the regional habitat.(3)From 1975 to 2010,land use changes in the study area were significant and had a huge influence on habitat quality;the habitat quality in the study area decreased consistently,and the area of the regions with bad and poor habitat quality accounted for more than 60%of the total study area.Construction land was the largest factor threatening habitat quality.  相似文献   

16.
Extraction and analysis of the shoreline and land reclamation patterns are important for studies on topics such as the dynamics of coastal wetland ecological environments, transportation and exchange of material energy in coastal regions, and recruitment of fishery resources. Spatial-temporal variations in the shoreline and land reclamation in the Bohai Sea were analyzed based on 49 Landsat images of 7 periods from 1985 to 2015. The following conclusions were drawn.(1) The extracted shoreline data based on visual interpretation had high precision, and the shoreline extraction errors could be controlled within the theoretical range.(2) Over the past 30 years, the shoreline of the Bohai Sea has exhibited an average rate of change of 188.47 m/a and an average accretion distance of 3.55×10~3 m toward the sea. The fastest rate of shoreline change occurred in Laizhou Bay(134.78 m/a), followed by Bohai Bay(128.20 m/a) and Liaodong Bay(61.69 m/a).(3) The average rate of reclamation was 3.25×10~4 ha/a in the Bohai Sea, where the total area of aquaculture land, unused land, and salt land exceeded 60% of the total reclamation area.(4) The geometric shape of the bay became increasingly complicated from year to year, and the geometric center of gravity of the bay moved rapidly toward the sea. In addition, the area of the bay showed a significant decreasing trend. Therefore, to protect the function and structure of the ecosystem in coastal regions, we must control the scale and rate of land reclamation in the future.  相似文献   

17.
The lower Yellow River still faces the threat of flood due to the unusual precipitation caused by global environmental change, river channel sedimentation, hidden danger in the dike and unfavorable river regime of "hanging river". According to the characteristics of the dike-break flood of the Yellow River, this paper has simulated, in six different scenarios, the dike-break flood routing by inputting the terrain data, typical historical flood data and land use data of study area to two-dimensional unsteady flow model. The results show that: firstly, the routing process of flood will occupy other rivers on the way and return to the rivers after reaching the lower reaches; secondly, in the same river reach, flood inundating area of north band is bigger than that at corresponding location of south bank under the same historical flood; thirdly, it is different in the degree of flood inundation in different regions due to different geographical locations in flood plain; fourthly, the area of mainstream where flood is deep and flow velocity is quick is relatively smaller, but the area of non-mainstream, where flood is shallow and flow velocity is slow, is relatively big; and finally, the possible influenced area of the dike-break flood is 141,948 km^2.  相似文献   

18.
With rapid urbanization and the socio-economic transformation, cultivated land protection has gradually become a major concern in China. The economic compensation plays a crucial role in promoting cultivated land protection and improving the utilization ratio of cultivated land. Farmer household's satisfaction has a great influence on the effectiveness of compensation. Therefore, households' willingness to select the economic compensation pattern for cultivated land protection has been considered and re-examined. By employing Participatory Rural Appraisal method (PRA), 3 villages and 392 households were investigated and sampled in mesa and hilly areas of Chongqing. Then a quantitative analysis framework of household livelihood hexagon has been developed to quantify the livelihood assets of differ- ent farmer households. Finally, the Gray Relation Model and Probit Regression Model have been employed to explore the coupling relationship between the household livelihood assets and their compensation pattern options. The results show that there are both qualitative and spatial heterogeneity in household livelihood assets. We found that the inequality of livelihood assets is evident for five household types. There is a spatial trend that the higher the eleva- tion, the less livelihood assets are. In addition, their options of economic compensation pat- tern vary from Chengdu Pattern to Foshan Pattern due to their difference in livelihood assets and difference in location. In detail, there is a coupling relationship between household live- lihood assets and their compensation pattern; negative correlation is observed between natural assets value and household pattern options, while the other livelihood assets have positive impacts on compensation pattern in varying degrees, which from the top are psy- chological assets, human assets, physical assets, financial assets, and social assets respec- tively. A conceptual compensation pattern system has been designed to meet the demands for farmer households mainly according to their shortage in livelihood assets. In addition, compensation method, compensation standard, the basis of compensation and the source of compensation funds have been proposed accordingly.  相似文献   

19.
青藏高原东部山地农牧区生计与耕地利用模式   总被引:3,自引:1,他引:2  
This study examined livelihood diversification and cropland use pattern in Keerma village, located in Jinchuan County, eastern Tibetan Plateau. Through stratified random sampling survey, participatory rural appraisal, investigation of households' plots and statistical methods, 63 households and 272 cropland plots were systemically investigated and sampled. The results show: (1) Different types of household have variety livelihood strategies, portfolio and income. Livelihood diversification and introducing and expanding off-farm activities can be the future trend, whereas, adverse natural environment, socio-economic conditions and peasants' capabilities together affect sustainable livelihood and land use. (2) Each livelihood strategy has its own impact on land use, mainly affecting land use type and land use intensi- fication level. (3) Diversification into off-farm activities could be the key of building sustainable livelihood and the essential approach of realizing sustainable land use in the region.  相似文献   

20.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain(SNP)in the 1910s and 1930s.We then allocated this cropland area to grid cells with a size of 1 km×1 km,using a range of cultivation possibilities from high to low;this was based on topography and minimum distances to rivers,settlements,and traffic lines.Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China,and map vectorization was performed with Arc GIS technology.Cropland areas for the1970s,1980s,1990s,2000s,and 2010s were retrieved from Landsat images.We found that the cropland areas were 4.92×104 km~2 and 7.60×10~4 km~2,accounting for 22.8%and 35.2% of the total area of the SNP in the 1910s and 1930s,respectively,which increased to 13.14×10~4 km~2,accounting for 60.9%in the 2010s.The cropland increased at a rate of 1.18×10~4km~2 per decade from the 1910s to 1970s while it was merely 0.285×10~4 km~2 per decade from the 1970s to 2010s.From the 1910s to 1930s,new cultivation mainly occurred in the central SNP while,from the 1930s to 1970s,it was mainly over the western and northern parts.This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号