首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The magnetic energy stored in the corona is the only plausible source for the energy released during large solar flares. During the last 20 years most theoretical work has concentrated on models which store magnetic energy in the corona in the form of electrical currents, and a major goal of present day research is to understand how these currents are created, and then later dissipated during a flare. Another important goal is to find a flare model which can eject magnetic flux into interplanetary space. Although many flares do not eject magnetic flux, those which do are of special importance for solar-terrestrial relations since the ejected flux can have dramatic effects if it hits the Earth's magnetosphere. Three flare models which have been extensively investigated are the emerging-flux model, the sheared-arcade model, and the magnetic-flux-rope model. All of these models can store and release magnetic energy efficiently provided that rapid magnetic reconnection occurs. However, only the magnetic-flux-rope model appears to provide a plausible mechanism for ejecting magnetic flux into interplanetary space.  相似文献   

2.
3.
《Astronomy& Geophysics》2009,50(2):2.17-2.19
Guillermo Gonzalez notes another astronomical reason why IYA2009 is special: mutual eclipse seasons at Jupiter, Saturn and Uranus.  相似文献   

4.
The coupled upper atmospheres, ionospheres and magnetospheres of the planets were the subject of a joint RAS–G/MIST discussion meeting hosted by the RAS on 10 January 2003, organized by Ingo Mueller-Wodarg and Emma Bunce . The scientific programme consisted of 10 presentations by speakers from the UK, France, USA and Australia.  相似文献   

5.
6.
The spectrum of velocity and magnetic fields in the solar wind is self-similar (power-law type) in the frequency range greater than >1/day indicating well-mixed turbulence. But it loses self-similarity for lower frequencies indicating the presence of large-scale patterns, which are intermittently generated inside the Sun and propagate from the Sun to the Earth.Here we discuss the spatia–temporal characteristics and origin of the 1.3-year quasi-periodic pattern found inside the Sun by helioseismic methods and detected in the solar wind. To identify and characterize this pattern on the Sun we use time series of solar magnetic Carrington maps generated at the Wilcox Solar Observatory and independent component data analysis. This analysis shows the latitudinal distribution of the pattern, its variable frequency and intermittent appearance.  相似文献   

7.
Abstract

A meridional circulation of sunspots has been measured through the digital analysis of the Meudon spectroheliograms from 1978 to 1983. Old and young sunspots follow a zonal meridional circulation, in several bands of latitude, in which two adjacent bands have opposite motions. This meridional circulation pattern is time-dependent. Using the H α filaments as magnetic field tracers, a large-scale magnetic pattern has been found that was also obtained independently by direct measurement of the magnetic field (Hoeksema, 1988).

The coincidence of a large-scale magnetic pattern with a zonal meridional circulation suggests the existence of azimuthal rolls below the surface, and these azimuthal rolls can explain a number of properties of the solar cycle. New rolls occur with increasing proximity to the Equator, thereby indicating the direction of propagation of the dynamo wave. The occurrence of rolls is very favorable to the emergence of the magnetic regions. The rolls also influence the magnetic complexity of the active regions. They modulate the surface rotation through the Coriolis force, which accelerates or decelerates the fluid particles. They therefore offer a plausible explanation of the torsional oscillation pattern.

There are a number of problems raised by such an unexpected circulation pattern: for example, the coexistence of axisymmeric rolls with hypothetical giant cells, the location of the dynamo source below or within the convective zone, and the coupling of the radiative interior and the convective layers. To resolve these important issues, continuous observational studies are needed of the manifestation of solar activity, as well as of radius and luminosity variations. So, we have aimed our paper at an audience of theoreticians in the hope that they take up the challenges we describe.  相似文献   

8.
The solar wind magnetic field distribution near the Earth has been studied and compared with the distribution anticipated according to the classical model. It has been indicated that a two-hump distribution of the IMF values discovered previously is not an artifact of averaging but reflects the actual structure of the magnetic field within the sector. In this case the magnetic field of polarity corresponding to the leading spot in the Northern Hemisphere is encountered more frequently. Not only the magnetic field magnitude but also the fields of either polarity increase with increasing activity. The distance between the peaks on the histogram of the magnetic field near the Earth increases from 6 to 10 nT. The quasi-22-year, 11-year, and quasibiennial (2.6 ± 0.3 years) cycles are observed in an alternate increase in the peaks, in the strength of the fields of either polarity, and in the ratio of the peaks to the occurrence frequency of zero values, respectively. The classical model is violated in approximately 25% of cases.  相似文献   

9.
Fractionation between the metal and silicate components of objects in the inner solar system has long been recognized as a necessity in order to explain the observed density variations of the terrestrial planets and the H-group, L-group dichotomy of the ordinary chondrites. This paper discusses the densities of the terrestrial planets in light of current physical and chemical models of processes in the solar nebula. It is shown that the observed density trends in the inner solar system need not be the result of special fractionation processes, and that the densities of the planets may be direct results of simultaneous application of both physical and chemical restraints on the structure of the nebula, most notably the variation of temperature with heliocentric distance. The density of Mercury is easily attributed to accretion at temperatures so high that MgSiO3 is only partially retained but Fe metal is condensed. The densities of the other terrestrial planets are shown to be due to different degrees of retention of S, O and H as FeS, FeO and hydrous silicates produced in chemical equilibrium between condensates and solar-composition gases. It is proposed that Mercury and Venus Have cores of Fe0, Earth has a core of Fe0 containing substantial amounts of FeS, and Mars has a quite small core of FeS with more FeO in its mantle than in Earth's. Geophysical and geochemical consequences of these conclusions are discussed.  相似文献   

10.
Solar system exploration has been grabbing the headlines over the past few months, with the first triple spacecraft observations of Jupiter followed by the first landing on an asteroid. Peter Bond reports.  相似文献   

11.
The natural remanent magnetization (NRM) in individual chondrules from the Allende meteorite was measured. These had previously been oriented relative to each other. The NRM directions of the chondrules are not initially random, but they become scattered after either alternating field (AF) or thermal demagnetization. The NRM is less stable than anhysteretic remanent magnetization (ARM) against AF-demagnetization.

The bulk of the NRM in the matrix is erased by 300°C. For the larger chondrules it is erased by 550°C, but for the smaller chondrules and the white inclusion a substantial decrease in NRM occurs by 350°C leaving about 20% up to 600°C. The behavior of the laboratory-induced ARM and the NRM under alternating field demagnetization suggest that the NRM of the chondrules consists of at least two components of TRM. One is a high-temperature component which was acquired when the individual chondrules were cooled through the Curie temperature and before they were assembled into the Allende meteorite. The other is a low-temperature component which was probably acquired in a field of about 1 Oe when the meteorite experienced thermal metamorphism or during the assembly of the meteorite.  相似文献   


12.
Many dynamic phenomena in the solar corona are driven by the complex and ever-changing magnetic field. It is helpful, in trying to model these phenomena, to understand the structure of the magnetic field, i.e. the magnetic topology. We study here the topological structure of the coronal magnetic field arising from four discrete photospheric flux patches, for which we find that seven distinct, topologically stable states are possible; the changes between these are caused by six types of bifurcation. Two bifurcation diagrams are produced, showing how the changes occur as the relative positions and strengths of the flux patches are varied. A method for extending the analysis to higher numbers of sources is discussed.  相似文献   

13.
14.
The magnetic properties of samples of the Olivenza chondrite (LL5) obtained from four collections have been investigated. The natural remanent magnetization (NRM) consists of a very stable primary component, which is randomly scattered in direction on a scale of 1 mm3 or less within the samples, and a secondary magnetization widely varying in intensity, and probably also in direction. The origin of the secondary NRM is not clear, and may be of terrestrial origin. It is concluded that the NRM is carried by the ordered nickel-iron mineral, tetrataenite. The origin of the primary NRM could be a magnetic field associated with the solar nebula, out of which the metal grains condensed and acquired a thermo-remanent magnetization (TRM), or Olivenza could be a fine-grained breccia, the constituent fragments possessing randomly directed magnetization. The implications for the origin and evolution of Olivenza and its parent body if the former magnetizing process has occurred are discussed.  相似文献   

15.
The most important models of coupling in the lithosphere-atmosphere-ionosphere system are considered. In some of these models, it is assumed that atmospheric acoustic and acoustic gravity waves (AGWs), which propagate through the atmosphere and reach ionospheric altitudes (resulting in the generation of electric field disturbances and modulation of charged particle density), are generated in the near-Earth atmosphere over the earthquake preparation region. In other models it is assumed that ionospheric disturbances originate owing to the modification of electric fields and currents due to electric processes in the lithosphere or near-Earth atmosphere. It seems impossible to stress on only one model and reject the remaining models because the characteristic spatial scales of effects observed in the ionosphere before earthquakes vary from 200–300 km to several thousand kilometers, and the characteristic times vary from several minutes to several days. We can assume that there are several physical mechanisms by which the lithosphere-ionosphere coupling is actually implemented.  相似文献   

16.
The concentrations of zirconium and hafnium have been determined in Orgueil, Murchison, Allende, Bruderheim and Alais by RNAA. The mean Zr/Hf weight ratio in the first four of these meteorites is 31.3 ± 2.2 indicating no major fractionation of Zr from Hf. Alais contains anomalously high amounts of many refractory lithophile elements, including Zr and Hf. Orgueil contains 3.1 ppm Zr and 0.11 ppm Hf, corresponding to 9.0 and 0.16 atoms, respectively, relative to 106 Si atoms.  相似文献   

17.
18.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

19.
The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields.Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity,magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.  相似文献   

20.
The magnetic field behavior in the magnetosheath, when the IMF and the solar wind velocity are almost collinear, has been analyzed based on the perturbation method. Magnetic disturbances are considered against a background of the stationary MHD solar wind flow around the magnetosphere when the magnetic field and the solar wind velocity are strictly collinear. It has been indicated that the angle between the magnetic field and velocity vectors increases considerably in a relatively thin layer near the magnetopause. The angle rise factor profiles have been determined for different distances from the subsolar point. The thickness of the layer, where the angle reaches values of about unity and more, has been estimated. It is important to take this layer into account when the magnetopause stability with respect to Kelvin-Helmholtz waves is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号