首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anisotropy of magnetic susceptibility (AMS) has been used to interpret flow directions in ignimbrites, but no study has demonstrated that the AMS fabric corresponds to the flow fabric. In this paper, we show that the AMS and strain fabric coincide in a high-grade ignimbrite, the Nuraxi Tuff, a Miocene rhyolitic ignimbrite displaying a wide variability of rheomorphic features and a well-defined magnetic fabric. Natural remanent magnetization (NRM) data indicate that the magnetization of the tuff is homogeneous and was acquired at high temperatures by Ti-magnetite crystals. Comparison between the magnetic fabric and the deformation features along a representative section shows that AMS and anisotropy of isothermal remanent magnetization (AIRM) fabric are coaxial with and reproduce the shape of the strain ellipsoid. Magnetic tests and scanning electron microscopy observations indicate that the fabric is due to trails of micrometer-size, pseudo-single domain, magnetically interacting magnetite crystals. Microlites formed along discontinuities such as shard rims and vesicle walls mimicking the petrofabric of the tuff. The fabric was thus acquired after deposition, before late rheomorphic processes, and accurately mimics homogeneous deformation features of the shards during welding processes and mass flow.  相似文献   

2.
Non-welded rhyolitic pyroclastic units in the central Snake River Plain are interbedded with the much better exposed, large-volume ‘Snake-River type’ rheomorphic welded rhyolitic ignimbrites and rhyolite lavas. We document one such unit to investigate why it is so different from the interbedded welded ignimbrites. The newly recognised Deadeye Member of southern Idaho is a soil-bounded eruption-unit that comprises ashfall layers and a 4-m-thick ignimbrite that extends for >35 km. The ignimbrite is non-welded, lithic-clast poor and varies from massive to diffuse low-angle cross-bedded. It contains abundant angular clasts of non-vesicular black glass, and upper parts contain accretionary lapilli. The ashfall layers above it contain coated ash pellets and ash clumps, which record moist aggregation of fine ash. The magmas of the Deadeye eruption were closely similar in composition and temperature to those that generated the intensely welded rheomorphic ignimbrites of the central Snake River Plain. We infer that the marked contrast in physical appearance of the Deadeye ignimbrite compared to the other, more typical Snake-River-type welded ignimbrites was the result of emplacement at relatively low temperatures during an eruption in a lacustrine environment. Magmatic volatile-driven fragmentation of the rhyolitic magma was influenced by interaction with lake water that also led to cooling. The Deadeye Member is the first-recorded example of explosive silicic phreatomagmatism in the central Snake River Plain.  相似文献   

3.
Summary Branney and Kokelaar (1992) emphasized that many features of pyroclastic flow deposits largely record the last processes involved in their formation, so Wolff and Turbeville's glib reminder of this philosophy at the end of their comment is quite unnecessary. Many structures in high-grade ignimbrites record non-particulate flow that occurred some considerable time after particulate aggradation ceased. This is not in question, and we pointed this out in our paper. It is the earlier deposition and deformation history of rheomorphic ignimbrites that is at issue. This is the aspect that bears more widely on the nature of pyroclastic flows and related eruptive phenomena. In another paper (Branney and Kokelaar 1994) we have documented evidence for hotstate remobilization and deformation of some stationary rheomorphic ignimbrites by post-emplacement disturbance (caldera collapse). However, in Branney and Kokelaar (1992) we provided evidence that shows that for most rheomorphic ignimbrites it is inappropriate to assume a twofold flow history (of hot remobilization after an initial flow came to rest). Progressive aggradation and agglutination provide the most straightforward explanation for many of the markedly irregular vertical variations in welding intensity characteristic of high-grade ignimbrites, just as progressive aggradation best accounts for vertical variations in sedimentary lithofacies and/or in chemical composition in other ignimbrites.  相似文献   

4.
Peralkaline welded tuffs from the islands of Gran Canaria, Canary Islands, and Pantelleria, Italy, show abundant evidence for post-depositional flow. It is demonstrated that rheomorphism, or secondary mass flowage, can occur in welded tuffs of ignimbrite and air-fall origin. The presence of a linear fabric is taken as the diagnostic criterion for the recognition of the process. Deposition on a slope is an essential condition for the development of rheomorphism after compaction and welding. Internal structures produced during rheomorphic flow can be studied by the methods of structural geology and show similar dispositions to comparable features in sedimentary slump sheets. It is shown that secondary flowage can occur in welded tuffs emplaced on gentle slopes, provided that the apparent viscosity of the magma is sufficiently low. Compositional factors favor the development of rheomorphism in densely welded tuffs of peralkaline type.  相似文献   

5.
Original geological and structural data, which derive from the analysis of the rheomorphic Green Tuff ignimbrite unit of Pantelleria, have offered the opportunity to define its modes of emplacement and the location of the eruptive sources in terms of distribution and geometry. The Green Tuff displays a wide range of rheomorphic structures consisting of preserved penetrative foliations, lineations and folds which, developed at distinct times, have been assigned to three major (D1–D3) deformation events accompanying and following the ignimbrite unit emplacement. The first D1 event produced distinct sets of structures developed along ductile shear zones generated during the emplacement of pyroclastic density currents along current-deposit boundaries. Palaeoflow directions of this event are completely independent from topography and are directly related to high-energy currents generated from the eruption. D2 event is characterized by folding due to down-slope post-emplacement flows related to gravity sliding processes whereas the D3 event was dominated by semi-brittle to brittle structures developed after the complete emplacement of the flow units and their subsequent cooling and compaction. The statistical analysis of these structural data has led to the hypothesis that the Green Tuff eruption developed from fissural sources that are largely superimposed on the NNE-trending dip-slip normal fault zones of the island (the Zinedi and the Montagna Grande faults). Our model also implies that the Green Tuff ignimbrite deposit can be the result of several events within a single eruptive cycle. The orientation of the fissural eruptive systems is evidence that the feeding structures for this large-size explosive event were strongly controlled by the E-W to ESE-WNW directed extension structures that affect the island of Pantelleria and, as a whole, the entire region of the Sicily Channel.  相似文献   

6.
Although the oldest volcanic rocks exposed at Pantelleria (Strait of Sicily) are older than 300 ka, most of the island is covered by the 45–50 ka Green Tuff ignimbrite, thought to be related to the Cinque Denti caldera, and younger lavas and scoria cones. Pre-50 ka rocks (predominantly rheomorphic ignimbrites) are exposed at isolated sea cliffs, and their stratigraphy and chronology are not completely resolved. Based on volcanic stratigraphy and K/Ar dating, it has been proposed that the older La Vecchia caldera is related to ignimbrite Q (114 ka), and that ignimbrites F, D, and Z (106, 94, and 79 ka, respectively) were erupted after caldera formation. We report here the paleomagnetic directions obtained from 23 sites in ignimbrite P (133 ka) and four younger ignimbrites, and from an uncorrelated (and loosely dated) welded lithic breccia thought to record a caldera-forming eruption. The paleosecular variation of the geomagnetic field recorded by ignimbrites is used as correlative tool, with an estimated time resolution in the order of 100 years. We find that ignimbrites D and Z correspond, in good agreement with recent Ar/Ar ages constraining the D/Z eruption to 87 ka. The welded lithic breccia correlates with a thinner breccia lying just below ignimbrite P at another locality, implying that collapse of the La Vecchia caldera took place at ~130–160 ka. This caldera was subsequently buried by ignimbrites P, Q, F, and D/Z. Paleomagnetic data also show that the northern caldera margin underwent a ~10° west–northwest (outwards) tilting after emplacement of ignimbrite P, possibly recording magma resurgence in the crust.  相似文献   

7.
 The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows. Received: January 30, 1995 / Accepted: January 22, 1996  相似文献   

8.
the single ignimbrite cooling unit E (average thickness, 28 m; volume, ca. 30 km3) forms the uppermost member of the Miocene Upper Mogán Formation on Gran Canaria. It is strongly chemically zoned from basal, first-erupted comendite (peralkaline rhyolite) to late-erupted trachyte, and, apart from an upper trachytic zone, it is densely welded. E was emplaced onto a surface inclined ca. 2–5° from the source caldera. Detailed mapping of key sections, up to 300 m long, exposed in barranco walls, ca. 10 km from the caldera margin, reveals structures that are interpreted to have been produced by rheomorphic deformation of the ignimbrite along shear zones. The shear zones formed within the lower-viscosity comenditic tuff. Extensional structures include mega-boudinage and decapitated sequences and compression resulted in sequence repitition by overthrusting. Mechanisms traditionally thought to be important during rheomorphic deformation of welded tuffs (compaction, lateral creep, folding, vertical density-driven diapirism) cannot account for these features, which reflect lateral (post-compactional) rheomorphic movement locally in excess of 800 m. We suggest the following sequence of events: emplacement of the several flow units; compaction, with little lateral movement; rheomorphic deformation. During and after compaction, layers of secondary porosity developed within the comenditic tuff, possibly where upward escape of gas was prevented by overlying, relatively impermeable layers of densely compacted ignimbrite. These structurally weak layers of high porosity subsequently acted as shear zones.  相似文献   

9.
Taupo volcanic centre is one of two active rhyolite centres in the Taupo Volcanic Zone (TVZ), and has been sporadically active over the past ca. 300 ka. At least four large-scale ignimbrites have erupted from the centre, including the well documented 26.5 ka Oruanui ignimbrite and 1.8 ka Taupo ignimbrite. Because stratigraphy of earlier ignimbrites and their sources are masked by later volcanism, disrupted by regional tectonics and obscured by poor exposure, indirect methods must be applied in order to determine their source regions. In this paper detailed componentry, density and petrology of lithic fragments from three ignimbrites (Rangatira Point, Oruanui, Taupo) are used to reveal aspects of the sub-Taupo caldera geology, including the evolution of the Taupo volcanic centre, to assist in ignimbrite correlation and to evaluate structures within the Taupo caldera complex. Lithic fragments identify a complex subsurface geology. The Rangatira Point ignimbrite sampled dominantly rhyolite lavas, plus a variety of welded ignimbrites, rare high-silica dacites and a single dolerite. Most lithic fragments in the Oruanui ignimbrite are andesite with minor rhyolite, welded ignimbrite, dacite and rounded greywacke, while in the Taupo ignimbrite, rhyolite is again the dominant lithic component with subordinate welded ignimbrites, andesite, and greywacke. The densities of lithic fragments indicate similar ranges of values for all lava types, and thus density is a poor indicator of lithology. Care must, therefore, be taken before interpreting subcrustal stratigraphy using density as the sole criterion. The petrography and geochemistry of lithic types are more specific, and the variation can be used to identify sources for the ignimbrites. Both pumice chemistry and rhyolite lithic fragments from the Rangatira Point ignimbrite are comparable to domes exposed at the southern end of the Western Dome Complex and, combined with limited outcrop information, suggest the most likely source for this unit is in the northern part of the Taupo caldera complex. The dominance of andesite lithic fragments in the Oruanui ignimbrite suggests a major andesite cone existed beneath the source area, and the different lithic suites between Oruanui and Taupo ignimbrites suggest these ignimbrites came, at least in part, from mutually exclusive collapse structures. We believe that the Oruanui caldera is sited principally in the northwestern part of present-day Lake Taupo and the Taupo caldera in the northeastern part. Identification of abundant ignimbrite lithics in the Taupo ignimbrite, which are considered to represent an intracaldera facies of an earlier ignimbrite, that is not exposed at the surface, suggest there was a further (pre-Oruanui) ignimbrite caldera in the Taupo ignimbrite eruptive vent region.  相似文献   

10.
In Anatolia (Turkey), extensive calc-alkaline volcanism has developed along discontinuous provinces from Neogene to Quaternary times as a consequence of plate convergence and continental collision. In the Nevsehir plateau, which is located in the Central Anatolian Volcanic Province, volcanism consists of numerous monogenetic centres, several large stratovolcanoes and an extensive, mainly Neogene, rhyolitic ignimbrite field. Vent and caldera locations for the Neogene ignimbrites were not well known based on previous studies.In the Neogene ignimbrite sequence of the Nevsehir plateau, we have identified an old group of ignimbrites (Kavak ignimbrites) followed by five major ignimbrite units (Zelve, Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) and two smaller, less extensive ones (Tahar, Sofular). Other ignimbrite units at the margin of the plateau occur as outliers of larger ignimbrites whose main distributions are beyond the plateau. Excellent exposure and physical continuity of the units over large areas have allowed establishment of the stratigraphic succession of the ignimbrites as, from bottom to top: Kavak, Zelve, Sarimaden Tepe, Cemilköy, Tahar, Gördeles, Sofular, Kizilkaya. Our stratigraphic scheme refines previous ones by the identification of the Zelve ignimbrite and the correlation of the previously defined ‘Akköy’ ignimbrite with the Sarimaden Tepe ignimbrite. Correlations of distant ignimbrite remnants have been achieved by using a combination a field criteria: (1) sedimentological characterisitics; (2) phenocryst assemblage; (3) pumice vesiculation texture; (4) presence and characteristics of associated plinian fallout deposits; and (5) lithic types. The correlations significantly enlarge the estimates of the original extent and volume of most ignimbrites: volumes range between 80 km3 and 300 km3 for the major ignimbrites, corresponding to 2500–10,000 km3 in areal extent.The major ignimbrites of the Nevsehir plateau have an inferred source area in the Derinkuyu tectonic basin which extends mainly between Nevsehir and the Melendiz Dag volcanic complex. The Kavak ignimbrites and the Zelve ignimbrite have inferred sources located between Nevsehir and Derinkuyu, coincident with a negative gravity anomaly. The younger ignimbrites (Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) have inferred sources clustered to the south between the Erdas Dag and the Melendiz Dag volcanic complex. We found evidence of collapse structures on the northern and southern flanks of the Erdas Dag volcanic massif, and of a large updoming structure in the Sahinkalesi Tepe massif. The present-day Derinkuyu tectonic basin is mostly covered with Quaternary sediments and volcanics. The fault system which bounds the basin to the east provides evidence that the ignimbrite volcanism and inferred caldera formation took place in a locally extensional environment while the basin was already subsiding. Drilling and geophysical prospecting are necessary to decipher in detail the presently unknown internal structure of the basin and the inferred, probably coalesced or nested, calderas within it.  相似文献   

11.
在羊屎沟铁岭组大理岩上发现鞘褶皱垂直于最大主应变轴X轴和垂直于中间应变主轴Y轴的切面,并对其变形特征及形成机制进行了考察和分析,认为,鞘褶皱所反映的韧性剪切作用方向大致为SSE方向150°~160°,且晚于铁岭组大理岩的形成时间。  相似文献   

12.
Sources of large-volume ignimbrites in the Central Andes are difficult to identify by conventional means. MSS band 7 LANDSAT imagery of the region was obtained with the specific objective of using the synoptic view to identify large ignimbrites and their sources. Two are described. The Guataquina ignimbrite covers some 2300 km2 and probably has a volume of some 70 km3. It appears to have a source in Cerro Guacha, a complex caldera-graben structure 25 km across. The Cerro Galan ignimbrite covers an area of some 2000 km' on the flanks of a major resurgent caldera some 30 km by 20 km across. Younger volcanic rocks have been erupted from two points on the caldera wall, and the structure appears to have had a geological history broadly similar to that of the Valles caldera.  相似文献   

13.
 Diverse spherulitic and granular crystalline fabrics, perlitic textures and fabrics related to the growth and migration of vesicles occur in the Garth Tuff, a largely welded Ordovician ignimbrite. Defining the distribution of such textures helps to constrain the ignimbrite's cooling and degassing history. Suites of spherulitic and perlitic textures closely reflect variation in cooling rates. Seven facies are defined based on the style and intensity of crystallisation: (1) a medium to coarsely crystalline, equigranular facies; (2) an intensely spherulitic facies; (3) a sparsely spherulitic facies; (4) a pectinate facies; (5) a microcrystalline to cryptocrystalline, equigranular facies; (6) a lithophysal facies; and (7) a transitional perlite–pectinate facies. Textural changes from facies 1 to 5 reflect progressively higher cooling rates. Facies 1 occurs in proximal settings in the ignimbrite's core. Facies 2 to 5 successively envelop facies 1, with facies 2 becoming the dominant fabric in the ignimbrite's core in medial settings. Facies 5 is typically developed in the originally glassy perlitic zones at the ignimbrite's welded margins. Crystallisation under hydrous conditions is reflected by second-boiling textures in the sporadically developed lithophysal facies. The seventh facies reflects a subtle interplay between cooling, hydration and crystallisation which locally prevented perlitic fracturing. The distribution of amygdales reflects patterns of volatile migration and entrapment. In the lower levels of the ignimbrite, amygdales occur in irregular concentrations or rare subvertical pipe-like structures. Pipe-like structures attest to fumarolic activity while the ignimbrite was in a rheomorphic state. Amygdales are widespread and evenly distributed in the upper levels of the ignimbrite. However, the top of the welding profile is characterised by a thin, poorly vesiculated, originally vitrophyric horizon that abruptly caps an intense concentration of amygdales. Ductile and brittle fabrics developed during the upward migration of gas. Microscopic drag folds occur around some amygdales. Jigsaw-fit to clast-rotated breccias originated through both late-stage pneumatic fracturing and autobrecciation. Vaporisation of water at the flow base provided a significant source of volatiles in addition to gas released during cooling and crystallisation. Secondary alteration has enhanced or modified some fabrics. Perlitic zones were susceptible to patchy chlorite–sericite–carbonate diagenetic alteration. Diagenesis and metamorphism have contributed to the infilling of vesicles. Received: 22 August 1997 / Accepted: 24 June 1998  相似文献   

14.
Distinguishing strongly rheomorphic tuffs from extensive silicic lavas   总被引:2,自引:6,他引:2  
High-temperature silicic volcanic rocks, including strongly rheomorphic tuffs and extensive silicic lavas, have recently been recognized to be abundant in the geologic record. However, their mechanisms of eruption and emplacement are still controversial, and traditional criteria used to distinguish conventional ash-flow tuffs from silicic lavas largely fail to distinguish the high-temperature versions. We suggest the following criteria, ordered in decreasing ease of identification, to distinguish strongly rheomorphic tuffs from extensive silicic lavas: (1) the character of basal deposits; (2) the nature of distal parts of flows; (3) the relationship of units to pre-existing topography; and (4) the type of source. As a result of quenching against the ground, basal deposits best preserve primary features, can be observed in single outcrops, and do not require knowing the full extent of a unit. Lavas commonly develop basal breccias composed of a variety of textural types of the flow in a finer clastic matrix; such deposits are unique to lavas. Because the chilled base of an ashflow tuff generally does not participate in secondary flow, primary pyroclastic features are best preserved there. Massive, flow-banded bases are more consistent with a lava than a pyroclastic origin. Lavas are thick to their margins and have steep, abrupt flow fronts. Ashflow tuffs thin to no more than a few meters at their distal ends, where they generally do not show any secondary flow features. Lavas are stopped by topographic barriers unless the flow is much thicker than the barrier. Ash-flow tuffs moving at even relatively slow velocities can climb over barriers much higher than the resulting deposit. Lavas dominantly erupt from fissures and maintain fairly uniform thicknesses throughout their extents. Tuffs commonly erupt from calderas where they can pond to thicknesses many times those of their outflow deposits. These criteria may also prove effective in distinguishing extensive silicic lavas from a postulated rock type termed lava-like ignimbrite. The latter have characteristics of lavas except for great areal extents, up to many tens of kilometers. These rocks have been interpreted as ash-flow tuffs that formed from low, boiling-over eruption columns, based almost entirely on their great extents and the belief that silicic lavas could not flow such distances. However, we interpret the best known examples of lava-like ignimbrites to be lavas. This interpretation should be tested through additional documentation of their characteristics and research on the boiling-over eruption mechanism and the kinds of deposits it can produce. Flow bands, flow folds, ramps, elongate vesicles, and probably upper breccias occur in both lavas and strongly rheomorphic tuffs and are therefore not diagnostic. Pumice and shards also occur in both tuffs and lavas, although they occur throughout ash-flow tuffs and generally only in marginal breccias of lavas. Dense welding, secondary flow, and intense alteration accompanying crystallization at high temperature commonly obliterate primary textures in both thick, rheomorphic tuffs and thick lavas. High-temperature silicic volcanic rocks are dominantly associated with tholeiitic flood basalts. Extensive silicic lavas could be appropriately termed flood rhyolites.  相似文献   

15.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

16.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   

17.
Three voluminous rhyolitic ignimbrites have been identified along the southern margin of the central Snake River Plain. As a result of wide-scale correlations, new volume estimates can be made for these deposits: ~350 km3 for the Steer Basin Tuff and Cougar Point Tuff XI, and ~1,000 km3 for Cougar Point Tuff XIII. These volumes exclude any associated regional ashfalls and correlation across to the north side of the plain, which has yet to be attempted. Each correlation was achieved using a combination of methods including field logging, whole rock and mineral chemistry, magnetic polarity, oxygen isotope signature and high-precision 40Ar/39Ar geochronology. The Steer Basin Tuff, Cougar Point Tuff XI and Cougar Point Tuff XIII have deposit characteristics typical of ‘Snake River (SR)-type’ volcanism: they are very dense, intensely welded and rheomorphic, unusually well sorted with scarce pumice and lithic lapilli. These features differ significantly from those of deposits from the better-known younger eruptions of Yellowstone. The ignimbrites also exhibit marked depletion in δ18O, which is known to characterise the SR-type rhyolites of the central Snake River Plain, and cumulatively represent ~1,700 km3 of low δ18O rhyolitic magma (feldspar values 2.3–2.9‰) erupted within 800,000 years. Our work reduces the total number of ignimbrites recognised in the central Snake River Plain by 6, improves the link with the ashfall record of Yellowstone hotspot volcanism and suggests that more large-volume ignimbrites await discovery through detailed correlation work amidst the vast ignimbrite record of volcanism in this bimodal large igneous province.  相似文献   

18.
 Rheomorphic ignimbrite D (13.4 Ma, Upper Mogán Formation on Gran Canaria), a multiple flow–single cooling unit, is divided into four major structural zones that differ in fabric and finite strain of deformed pyroclasts. Their structural characteristics indicate contrasting deformation mechanisms during rheomorphic flow. The zones are: (a) a basal zone (vitrophyre) with pure uniaxial flattening perpendicular to the foliation; (b) an overlying shear zone characterized by asymmetric fabrics and a significantly higher finite strain, with an ellipsoid geometry similar to stretched oblate bodies; (c) a central zone with a finite strain geometry similar to that of the underlying shear zone but without evidence of a rotational strain component; and (d) a slightly deformed to non-deformed top zone where the almost random orientation of subspherical pyroclasts suggests preservation of original, syn-depositional clast shapes. Rheomorphic flow in D is the result of syn- to post-depositional remobilization of a hot pyroclastic flow as shown by kinematic modeling based on: (a) the overall vertical structural zonation suggested by finite strain and fabric analysis; (b) the relation of shear sense to topography; (c) the interrelationship of the calculated vertical cooling progression at the base of the flow (formation of vitrophyre) and the related vertical changes in strain geometry; (d) the complex lithification history; and (e) the consequent mechanisms of deformational flow. Rheomorphic flow was caused by load pressure due to an increase in the vertical accumulation of pyroclastic material on a slope of generally 6–8°. We suggest that every level of newly deposited pyroclastic flow material of D first passed through a welding process that was dominated by compaction (pure flattening) before rheomorphic deformation started. Received: 25 June 1997 / Accepted: 28 October 1998  相似文献   

19.
We propose a mechanism by which massive ignimbrite and layered ignimbrite sequences — the latter liable to have been previously interpreted as multiple flow units-form by progressive aggradation during sustained passage of a single particulate flow. In the case of high-temperature eruptive products the mechanism simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variations in texture, including between non-welded, eutaxitic, rheomorphic (lineated) and lava-like. Agglutination can occur within the basal part of a hot density-stratified flow. During initial incursion of the flow, agglutinate chills and freezes against the ground. During sustained passage of the flow, agglutination continues so that the non-particulate (agglutinate) layer thickens (aggrades) and becomes mobile, susceptible to both gravity-induced motion and traction-shear imparted by the overriding particulate part of the flow. The particulate to non-particulate (P-NP) transition occurs in and just beneath a depositional boundary layer, where disruptive collisions of hot viscous droplets give way, via sticky grain interactions, to fluidal behavior following adhesion. Because they have different rheologies, the particulate and non-particulate flow components travel at different velocities and respond to topography in different ways. This may cause detachment and formation of two independent flows. The P-NP transition is controlled by factors that influence the rheological properties of individual erupted particles (strain rate, temperature, and composition including volatiles), by cooling and volatile exsolution during transport, and by the particle-size population and concentration characteristics of the depositional boundary layer. At any one location along the flow path one or more of these can change through time (unsteady flow). Thus the P-NP transition can develop momentarily or repeatedly during the passage of an unsteady flow, or it can occur continuously during the passage of a quasi-steady flow supplied by a sustained explosive eruption. Vertical facies successions developed in the deposit (high-grade ignimbrite) reflect temporal changes in flow steadiness and in material supplied at source. The P-NP transition is also influenced by factors that affect flow behaviour, such as topography. It may occur at any location laterally between a proximal site of deflation (e.g. a fountain-fed lava) and a flow's distal limit, but it most commonly occurs throughout a considerable length of the flow path. Up-sequence variations in welding-deformation fabric (between oblate uniaxial to triaxial and prolate) reflect evolving characteristics of the depositional boundary layer (e.g. fluctuations from direct suspension-sedimentation to deposition via traction carpets or traction plugs), as well as possible modifications resulting from subsequent, post-depositional hot loading and slumping. Similar processes can also account for lateral lithofacies gradations in conduits and vents filled with welded tuff. Our consideration of high-grade ignimbrites has implications for ignimbrite emplacement in general, and draws attention to the limitations of the widely accepted models of emplacement involving mainly high-concentration non-turbulent transport and en masse freezing of high-yield-strength plug flows.  相似文献   

20.
Voluminous sheets of rhyolitic ignimbrites were crupted during Miocene time in a region of Central America that is underlain by a thick sequence of middle Paleozoic and older metamorphic and plutonic rocks. Strontium isotopic ratios of fifteen ignimbrites range from 0.7035 to as high as 0.7175. These values are markedly higher than those measured for cale-alkaline lavas of the same province, but overlap the range found in basement rocks that may have served as source rocks for anateetic magmas. This relationship is in contrast to that found in the western United States where siliceous ignimbrites are not significantly richer in radiogenic strontium than are the basalt erupted through the same basement series. Several possible models for the origin of the large volumes of siliceous magma are examined in terms of major-element and isotopic relations, experimental studies of phase relations, and the thermal requirements of melting or assimilating basement rocks. A mathematical model for the effects of assimilation in open and closed systems permits a comparison of predicted chemical and isotopic compositions with those observed and places limits on the plausibility of various schemes of contamination with or without concurrent crystal fractionation. None of the models is without its flaws. Recent suggestions that large volumes of siliceous magma may be derived from the mantle or lower crust explain certain aspects of the Central American ignimbrites very well if one postulates that the high strontium ratios resulted from contamination of the magma with radiogenic strontium released by the break-down of mieas in basement rocks through which the magmas rose. Such a model fails to explain the apparent restriction of large rhyolitic ignimbrite cruptions to areas underlain by thick continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号