首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 531 毫秒
1.
1961~2010年河西地区平均风速时空变化趋势分析   总被引:6,自引:2,他引:4  
张克新  潘少明  曹立国 《地理科学》2014,(11):1412-1416
利用河西地区15个气象站点1961~2010年月平均风速和最大风速日值资料,采用M-K突变检验、ArcGIS中的IDW插值和小波分析等方法分析河西地区平均风速的时空变化趋势。结果表明:近50 a来,河西地区年平均风速呈明显下降趋势,其递减速率为0.14 m/( s?10 a)(α=0.001);该地区四季平均风速均呈减少趋势且减少趋势相同;平均风速的变化在空间分布上存在差异,具体表现为年平均风速的递减趋势是自西向东逐渐减小,瓜州和玉门是该地区减幅最大的区域,而乌鞘岭却呈现出微增的趋势;风速的长期变化具有一定的突变性,其年平均风速在1985年发生突变;该地区平均风速存在存在多尺度的周期结构特性,其变化周期为6、19和25 a。  相似文献   

2.
利用阿勒泰地区6个气象站点1962-2016年平均风速日值数据资料,采用滑动趋势分析、Mann-Kendall突变检测、Molet小波分析、ArcGIS中插值等方法,研究近55 a来阿勒泰地区平均风速的变化趋势。分析表明:(1)阿勒泰地区风速整体呈显著下降趋势,平均以0.021 1 m·s-1·a-1的速率逐步降低,四个季节风速变化趋势与全年一致,其中,夏季下降最突出,递减率为-0.025 4 m·s-1·a-1。(2)平均风速空间分布差异明显,总体表现为自西向东逐渐降低。(3)Molet小波分析显示,全年及四个季节平均风速变化均存在25~28 a变化周期,春、夏、秋、冬季表现强弱不同,体现出季节性差异。(4)全区年平均风速于1990年发生突变,但不同季节突变年份存在较大差异,春季、夏季和秋季平均风速突变分别发生在1994年、1993年和1990年,而冬季发生在1983年。(5)城市化进程不是风速显著降低的关键原因,相对于城市化进程,大气环流的变化可能是引起阿勒泰地区风速降低的关键因素。  相似文献   

3.
根据腾格里沙漠周边地区9个气象站点1960-2012年逐月平均气温、平均最高气温、平均最低气温、降水量、平均相对湿度、日照时数和平均风速的观测资料,利用线性回归、滑动平均和Mann-Kendall突变检验分析了该区1960-2012年气候变化特征。结果表明:1960-2012年,腾格里沙漠周边地区年平均气温以0.34 ℃/10a的速率呈显著上升的趋势,并于1989年发生显著突变;从季节变化来看,冬季升温幅度最大,达0.52 ℃/10a;年平均最高、最低气温均呈显著上升的趋势,但是年平均最低气温的升温速率0.44 ℃/10a明显大于最高气温升温速率0.25 ℃/10a,增暖的不对称性导致年平均气温日较差以0.18 ℃/10a的速率显著减小。年降水量以1.08 mm/10a的速率增加,但变化趋势不显著,四季降水量均有不同程度的增加;湿润指数的变化亦不显著,年、春季、夏季和秋季湿润指数均有减小趋势,冬季湿润指数有增加趋势;年、季平均风速皆呈显著减小的趋势,年平均风速减小的速率为0.15 m·s-1·(10a)-1,日照时数以5.6 h/10a的速率呈不显著的增加趋势,各季节日照时数有不同的变化趋势,春季和夏季日照时数呈增加趋势,而秋季和冬季的日照时数呈减小趋势。  相似文献   

4.
张莉秋  张红  李皎  李晋昌 《中国沙漠》2016,36(4):1116-1125
气候变化对土地沙漠化有一定驱动作用。以晋北沙漠化地区为研究区域,对1980-2014年影响该地区土地沙漠化的气候因子进行分析,采用气候变化倾向率、突变检验、滑动t检验、GIS空间模拟和插值等方法来探讨气候变化时空变化特征。结果表明:(1)1980-2014年,晋北沙漠化地区春季升温速率较大,气温整体呈缓慢上升趋势,年均气温从1980年6.37℃升高到2014年8.01℃,空间上呈现出由两边向中心逐渐减弱的趋势,并且在1990年存在明显增温突变,春夏季气温突变明显;(2)晋北沙漠化地区秋季降水增长幅度最为明显,年降水量整体呈现升高趋势,年降水量的倾向率均为正值,年降水量从1980年357.83mm升高到2014年403.82mm,降水量处于非突变的自然波动状态,稳定性较强,在空间上差异明显,由东北向西南逐渐增加;(3)年均风速呈逐年减小的趋势,春季风速从1980年3.25m·s-1降低到2014年2.48m·s-1,减小趋势最为明显,在空间上呈现由西北至东南逐渐增大的趋势。  相似文献   

5.
1960-2013年南北疆风速变化特征分析   总被引:3,自引:2,他引:1  
何毅  杨太保  陈杰  冀琴  王凯 《干旱区地理》2015,38(2):249-259
利用较为均匀分布在新疆的45个气象站1960-2013年平均风速数据,通过气候趋势分析、气候突变分析、Morlet小波分析、Pearson相关分析等方法,研究近50 a来南北疆平均风速变化特征,结果表明:(1)1960-2013年南北疆地区年平均风速分别以0.15 m·s-1·(10 a)-1和0.14 m·s-1·(10 a)-1的速率显著降低,1960-1990年南北疆年均风速分别以0.21 m·s-1·(10 a)和0.18 m·s-1·(10 a)-1速率降低;1991-2013年北疆以0.01 m·s-1·(10 a)-1的速率下降,而南疆却以0.17 m·s-1·(10 a)-1的速率上升,各季节风速变化趋势与年序列相似。(2)四季中,南北疆的年递减率均是夏季最为显著,北疆是冬季变化不明显,而南疆其余各季节相差不大。(3)从空间分布上显示,北疆各站点总体较南疆明显,低海拔区递减幅度较大。(4)风速的长期变化具有一定的突变性,南北疆的平均风速均在1980年前后出现明显的突变点,从各季节平均风速来看,北疆春、夏、秋季突变出现的时间稍早于冬季,南疆春季突变出现的时间稍早于夏、秋和冬季。(5)Morlet小波分析结果显示,南北疆风速变化均存在4 a、8 a及15~20 a左右的变化周期,春夏秋冬各季节表现出强弱不一致,体现出季节性变化。(6)城市化发展对风速的变化产生了一定影响,但不是风速显著下降的主要原因,大气环流变化和气候变暖才是造成风速减小的可能原因。  相似文献   

6.
中国北方风蚀区风速变化时空特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用北方风蚀区155个气象站点1971-2015年平均风速数据,采用气候趋势分析、空间插值和小波分析等方法分析北方风蚀区平均风速的时空变化趋势。结果表明:近45 a来,北方风蚀区年平均风速为2.70 m·s-1,呈明显减小趋势,其递减速率为0.017 m·s-1·a-1(α=0.001),1980s风速减小最快,1990s减小最缓慢,2010s风速出现增大趋势;我国北方风蚀区四季的平均风速均呈现下降趋势,下降速度春季>夏季>秋季>冬季(α=0.001),不同年代不同季节风速变化存在较大差异,2010s除春季外其他季节风速均呈现增大趋势;空间分布上显示,风速变化幅度空间分布差异明显,北方风蚀区内的新疆西北部和东南部、青海、内蒙古中部和东北部、黑龙江以及吉林为风速降低较快的区域,甘肃东南部、宁夏、陕西和山西北部以及新疆的东北部和西部等地区是风速降低不明显的区域。春季和夏季风速降低较快的区域面积扩大,冬季和秋季风速降低较缓的区域扩大;平均风速存在多时间尺度的周期性结构特征,28 a时间尺度左右为风速变化的主周期,平均变化周期为18 a。  相似文献   

7.
近55 a辽宁省风速时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
风速时空演变特征分析是气候变化研究的主要方面之一,对气候异常评估与防风预测预报工作有重要意义。以辽宁省为研究区,利用1960-2014年省内23个气象站点逐日气象数据,采用线性回归、Mann-Kendall法分析风速多时间格局演变情况。借助ArcGIS软件中反距离权重插值与表面分析模块对研究区进行空间分析,并通过Pearson相关性检验探讨风速与气温、气压的相关关系。结果表明:(1) 从时间格局上看,1960年以来辽宁省平均风速总体呈显著下降趋势,年内下降趋势为“双峰型”,递减率0.559 m·s-1·(10 a)-1;年际递减率为0.22 m·s-1·(10 a)-1;四季风速递减率春季 > 冬季 > 秋季 > 夏季。(2) 就空间格局而言,空间分布特征由中部向东西两侧递减,季节差异性较小。(3) 辽宁省风速降低与气温、气压变化有关,且风速与气温呈负相关,与气压呈正相关。  相似文献   

8.
秦岭南北日照时数时空变化及突变特征   总被引:1,自引:0,他引:1       下载免费PDF全文
根据秦岭南北47个气象站1960-2011年逐月数据,采用样条曲线插值法(Spline)、气候倾向率、Pettitt突变点检测、相关分析等方法对该区日照时数的时空变化特征以及影响其变化的气象要素进行了分析。结果表明:(1)研究区多年平均日照时数为1 838.7 h,空间分布呈东北向西南递减格局,按各分区日照长短排序为秦岭以北>秦岭南坡>汉水流域>巴巫谷地。四季日照时数分布特征与年尺度上的结论基本一致,4个季节按其大小排序为夏季>春季>秋季>冬季,四季均以秦岭以北的日照时数最大。(2)近52 a各区年日照时数变化趋势较为一致,绝大部分站点呈下降趋势。下降的站点占本区站点总数的比例排序为巴巫谷地>汉水流域>秦岭以北>秦岭南坡,秦岭以南的广大地区相对于秦岭以北日照下降更明显。春季47%的站点呈上升趋势,显著上升的站点集中于中部地区;夏季98%的站点呈显著下降趋势;秋季和冬季变化特征及其空间分布无明显规律。(3)年尺度、春季和夏季突变年份集中于1978-1981年间,秋季的突变特征不甚明显,突变年份和空间分布无明显规律性可言,冬季日照时数突变年份同步性和一致性较差。(4)绝大部分站点日照时数与风速、最高气温、平均气温呈正相关关系,与降水和相对湿度呈负相关关系,与最低气温关系不明显。  相似文献   

9.
巴丹吉林沙漠周边地区近50 a来气候变化特征   总被引:7,自引:4,他引:3  
 利用巴丹吉林沙漠周边9个气象站的1960—2009年逐月平均气温、平均最高气温、平均最低气温、降水量、平均相对湿度和日照时数及1960—2008年逐月平均风速的观测资料,运用线性回归、滑动平均和Mann-Kendall突变检验分析了该区近50 a来气候变化特征。结果表明,近50 a来,巴丹吉林沙漠周边地区年平均气温以0.40 ℃/10a的速率显著升高;四季平均气温的升高亦很显著,以冬季的升温速率最大;年、季节平均最高气温和平均最低气温均呈显著升高趋势;年、季平均日较差则显著减小,且以最低气温的升温速率大于最高气温的升温速率为特点。年降水量以0.87 mm/10a的速率呈不显著增加趋势;各季节降水量变化略有差异且均不显著,春季降水量略有减少,夏、秋和冬季略有增加。湿润指数的变化不明显,总体来看,年和冬季湿润指数略有增大,春、夏和秋季湿润指数略有减小。年日照时数以34.8 h/10a的速率显著增加,各季节日照时数亦均有增加趋势,其中春季增加最为明显。年平均风速以-0.092 m·s-1·(10a)-1的速率呈显著减小趋势;各季节平均风速均显著减小,以冬季的减小速率最大。  相似文献   

10.
基于1960―2015年长江流域128个站点的月风速观测数据,结合地形特点将长江流域分成5个子区域,并运用一元线性回归、相关分析和修正的Mann-Kendall(MMK)检验对长江流域风速变化趋势的时空特征进行研究,结果表明:1)1960―2015年长江流域年平均风速以-0.006 5 m/s·a的速率显著下降,5个子区域中,区域中下游丘陵与平原区(R1)下降最显著,上游青藏高原区(R5)次之,上游盆地区(R3)变化最小。2)季节上,全区风速春季下降最快,夏季最慢。而子区域除R1冬季降幅最大外,其余区域季节风速变化速率也为春季降幅最大,夏季最小。逐月变化上,流域整体风速3月下降最快,8月最慢,各子区域风速最大降幅也集中在3月。3)空间分布上,长江流域年平均风速降幅呈现东部大、中部小、西部较大的特点,全区50%的站点下降趋势显著,且这些站点集中分布于R1地区。此外,4个季节风速与年风速的变化趋势呈现相似的空间分布特征。4)长江流域风速下降与北极涛动(AO)指数上升、区域气候变暖和城市化加速等有关。  相似文献   

11.
分析陕甘宁黄土高原区地表蒸散变化特征及其影响因素,可以为区域水资源规划、生态环境改善提供依据。本文利用MOD16蒸散数据,统计分析了陕甘宁黄土高原区2000-2012年地表实际蒸散量的时空变化特征,并结合国家气象站点观测数据和基于像元的相关分析法探讨了其影响因素。结果表明:(1) 2000-2002年蒸散量迅速上升,在2003年达到最高值378.6 mm, 2003-2006年蒸散量呈下降趋势,2006年之后蒸散量呈现缓慢上升趋势。(2) 近13年来,陕甘宁黄土高原区多年平均蒸散量具有明显的空间差异,蒸散量自西北至东南递增,最南部的六盘山、子午岭、黄龙山地是3个主要的高值区;年蒸散量以夏季最多,其次是春季,秋季和冬季最少,且季节蒸散的分布与年蒸散的空间分布格局基本一致。(3) 陕甘宁黄土高原区蒸散量草地和耕地的贡献率最高,密灌丛、疏灌丛次之,常绿针叶林、森林草原贡献率则较小。(4) 陕甘宁黄土高原区动力因素对地表蒸散量影响以正相关为主,风速对该区影响较大;热力因素对地表蒸散量影响以负相关为主,其中气温与蒸散在空间上呈负相关的区域较大,日照时数与蒸散在空间上的负相关区域的面积次之;水分条件(降水量、相对湿度)对蒸散的影响也以正相关为主。  相似文献   

12.
利用2018年10月8日至2019年1月31日塔克拉玛干沙漠腹地起伏地形上高大沙垄高点和低点的温度、相对湿度、风速和大气压同步观测资料,对比分析沙漠起伏地形上秋冬季的微气象特征。结果表明:塔克拉玛干沙漠腹地高大沙垄造成的地形起伏,使得沙垄高点和沙垄低点气温、比湿和风速日变化差异明显。沙垄高点和沙垄低点气温差异主要体现在夜间,与沙漠腹地夜间存在逆温现象有关,表现出沙垄高点气温明显高于沙垄低点,观测期气温差异平均值为6.6 ℃。沙垄低点气温日较差高于沙垄高点。2018年10、11、12月,气温随高度变化出现逆温现象与沙垄高点气温高于沙垄低点气温在时间上相互对应。两个站点比湿较小,平均比湿分别为0.68 g·kg-1和0.99 g·kg-1。比湿日变化趋势随季节发生显著变化,主要与大气稳定度增加、冬季水汽增多及夜间逆湿现象逐渐显著相关。地形位置较高的沙垄高点风速比沙垄低点大,风速差异主要体现在夜间。2018年11月2、14、15、20日和2019年1月30日,沙垄高点风速维持在1.9~4.6 m·s-1,平均3.2 m·s-1,沙垄低点风速维持在0.8~4\^5 m·s-1,平均2.5 m·s-1。  相似文献   

13.
塔克拉玛干地区气候变化对全球变暖的响应   总被引:9,自引:5,他引:9  
杨莲梅 《中国沙漠》2003,23(5):497-502
从地面水汽压(大气含水量)、平均风速、湿润指数、相对湿度和气压的角度分析在全球变暖的情况下,塔克拉玛干地区气候的年和季节变化特征,结果表明:①年和四季平均风速呈阶梯式下降趋势,具有显著减小的线性趋势,并于1973年发生了由大到小的突变。②夏、秋、冬季和年地面水汽压(大气含水量)自20世纪80年代以来呈较大幅度波动式上升,具有显著的线性增加趋势。夏、秋季地面水汽压于1969年和1973年发生了由少到多的突变。秋、冬季大气含水量的显著增加并没有导致降水量的增加,降水量的变化不能充分反映大气含水量的变化。③夏季湿润指数有显著增加趋势,春季有微弱的上升趋势,而降水量夏季和年有显著增加趋势,春季有微弱的上升趋势,说明综合反映气候干湿变化的湿润指数变化与单用降水量表示的气候干湿变化不完全一致。④夏、秋季和年相对湿度呈波动式上升趋势,夏季和年相对湿度分别于1970年和1974年发生了由低到高的突变。⑤年和四季的平均气压40a来无变化。  相似文献   

14.
冬季气候变暖对山西省冬小麦可种植区的影响   总被引:4,自引:0,他引:4  
基于山西省境内较为均匀分布的70 个地面气象观测站1970-2012 年冬季逐日气温资料,采用线性倾向估计法分析了负积温、最冷月平均气温和年极端最低气温的变化特征,采用累积距平法确定其突变点,以突变点为界分为前后2 个时间段,依据前后时间段等值线的变化分析冬季气候变暖对山西省冬小麦可种植区的影响。结果表明:山西省负积温呈现显著减少趋势(通过了α=0.01 的显著检验),最冷月平均气温和年极端最低气温呈现不显著升高趋势;突变后,负积温平均减少了103.4℃,最冷月平均气温和年极端最低气温分别升高了0.8℃和0.7℃;在3 个指标中,决定山西省冬小麦能否种植的关键因子是负积温和年极端最低气温,最冷月平均气温的影响较小;冬季气候变暖后,平均状况下,冬小麦可种植区域面积扩大了约2.9×106 hm2,扩大52%,80%保证率下,冬小麦种植面积扩大了约2.3×106 hm2,扩大79%。  相似文献   

15.
鄂尔多斯高原近40a气候变化研究   总被引:22,自引:4,他引:22  
鄂尔多斯高原特殊的地理位置对全球气候变化更为敏感,利用1961-2000年地面气温和降水记录,通过计算气候趋势系数和气候倾向率描述鄂尔多斯高原气候空间变化特征。结果表明,40 a来本区气温有明显上升趋势,平均气温以0.43℃·(10a)-1幅度升高。全年各月气温都在上升,但冬季升温最剧烈,达0.82℃·(10a)-1,其中12月可达1℃·(10a)-1,为全年之首。夏季最弱,仅0.31℃·(10a)-1。本区增温幅度比较剧烈,大于内蒙古全区平均水平。冬、夏增温差异导致气温年较差减小。20世纪60年代年平均气温是下降的,从70年代开始上升,90年代上升最剧烈。冬季温度变化与年均温一致,但夏季不同,90年代以前夏季温度是降低的,到90年代夏季温度上升趋势十分明显。温度升高的程度存在区域差异,西北部最强,东南部最弱。降水的趋势变化不很明显,年降水量略有减少,秋季降水量减少比其他季节明显。降水变化也有区域差异,南部比北部降水量减少明显,毛乌素沙漠及以南降水倾向率为-18.3 mm·(10a)-1,而北部接近于零。气候变暖会使蒸发量增大,从而导致干旱,气温持续增高再加上降水量减少则形成干旱化,对生态环境和地方经济会产生重大影响。  相似文献   

16.
利用乌鲁木齐市5座100 m气象塔10层风速观测资料,分析了乌鲁木齐市城区和郊区近地层风速季节变化和日变化特征。结果表明:(1)乌鲁木齐市风速最大值出现在14:00-16:00,最小值多在夜间或上午。冬季风速最小、夏季最大;冬季风速始终处于较为稳定、有微小波动的低值区;夏季风速表现出一定的变化趋势。(2)夏季风速在一年里波动最大,随地势降低波动减小,南郊最大(1.5~6.4 m·s-1),北郊最小(1.3~4.6 m·s-1);秋季和春季风速波动次之;冬季风速波动最小,南郊最大(1.3~4.6 m·s-1),北郊最小(0.7~2 m·s-1)。(3)近地层100 m内城区和北郊风速随高度变化较小,冬季基本为1~2 m·s-1,而南郊风速随高度增加变化幅度最大,从1 m·s-1增加到4 m·s-1以上;愈近地面,城区与郊区风速相差愈大,近地面城区平均风速明显低于郊区,春季、夏季、秋季和冬季分别低5%~32%、8%~30%、15%~37%、14%~48%。(4)近地层风速廓线在近中性层结时一般符合对数风速廓线模式,对数律显著性不强的时段主要在正午前后。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号