首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一次层状云飞机播云试验的云微物理特征及响应分析   总被引:2,自引:1,他引:2  
于丽娟  姚展予 《气象》2009,35(10):8-24
根据2005年3月21日在河南进行的层状云飞机播云试验的探测资料,对人工增雨催化前后层状云的宏微观物理量进行对比分析.结果表明,播云前在4200m高度平飞中观测到的小云粒子数浓度最大值为1.36×108个/m3,相应平均直径在5μm左右;小云粒子数浓度和云液态水含量在催化后均减小,播撒层下方变化较之播撒层变化更加显著;5000m高度小云粒子平均直径由催化前的17.32μm增加到催化后的18.07μm,平均直径明显增大,这些作业前后微观物理量的变化表明了人工催化层状云的物理响应.不同高度飞行具有相似的粒子谱分布.  相似文献   

2.
一次积层混合云飞机播云对云微物理过程影响效应的分析   总被引:2,自引:0,他引:2  
辛乐  姚展予 《气象》2011,37(2):194-202
人工增雨效果评估主要关注的是催化后云和降水过程是否产生了预期的变化,这首先表现在云和降水的宏微观过程有无明显变化,因此了解播云作业后的云微物理结构的变化是很必要的.2009年4月18日在河北张家口进行了一次飞机播云实验,本文采用飞机探测所取得的PMS资料,分析了播云对云微物理过程影响,并进行了云物理因子综合研究.结果表明:催化后播云高度上液态含水量大幅度降低,粒子平均直径由催化前20.4μm增大到23.9 μm;云中粒子谱结构也发生很大的变化,催化后冰晶减少,降水尺度粒子显著增加;而且在播云1小时后影响区地面累计降雨量达到最大.  相似文献   

3.
秋季层状云中高值过冷水区的微物理特征   总被引:4,自引:0,他引:4  
王俊  张连云  陈金敏  王庆  龚佃利 《气象》1999,25(12):24-27
利用11架次的机载“PMS”资料,分析了山东秋季层状云中高值(大于0.1g·m~(-3))过冷水区的微物理特征:最大过冷水含量为0.361g·m~(-3),84.0%的过冷水含量在0.1~0.2g·m~(-3)间,过冷水连续出现的宽度86.1%小于3.0km。雪晶形状以霰粒和小雪粒为主。2阶(函数可以很好地拟合云滴尺度谱,质量谱适合用对数正态函数拟合。  相似文献   

4.
层状云飞机增雨催化剂用量研究   总被引:1,自引:0,他引:1  
余兴  戴进 《气象科技》2007,35(1):115-118
催化用量和催化云的温度场、水汽场、动力场、背景水凝物粒子数浓度和谱分布密切相关。根据层状云中催化层过冷云水量、冰水面饱和水汽密度差、增长形成的冰晶群平均质量、催化剂有效扩散空间、催化剂成核率,给出了催化用量的计算公式。选用尺度为50、100和150μm等效水滴质量表示不同核化增长环境的冰晶群平均质量,对于同质核化,催化剂成核率取为1012(个.g-1),对于异质核化以-6℃-、8℃-、10℃为例,计算了催化用量。计算结果和广泛采用的经验用量吻合。比较后发现,国内飞机增雨的实际催化用量明显偏低,应当引起重视。  相似文献   

5.
层状云降水微物理特征及降水机制研究概述   总被引:4,自引:2,他引:4  
石爱丽 《气象科技》2005,33(2):104-108
层状云是中国北方大部分地区降水的主要云系,采用综合观测资料的分析研究并结合最新的数值模式对层状云特征和降水机制进行深入研究很有必要,也是含后工作的方向。描述了层状云的种类、特点,通过分析机载PMS(粒子测量系统)资料和地面雨滴谱资料介绍了国内外在层状云云滴谱、冰晶谱、雪质粒谱、雨滴谱、云中质粒总谱等微物理特征方面的研究方法及成果,还介绍了国内外在层状云降水机制方面的研究方法及成果,包括层状云降水数值模拟以及暖云降水机制和冷云降水机制研究。  相似文献   

6.
不同天气系统层状云微物理特征个例分析   总被引:1,自引:1,他引:1  
周黎明  牛生杰  王俊 《气象》2014,40(3):327-335
利用PMS粒子测量系统和机载温湿仪观测获取的吉林省2007年5月15日高空槽和5月28日冷涡天气下降水云垂直探测资料,对比分析了两次不同天气系统下形成降水过程中云系的宏微观结构特征。结果发现,高空槽影响下的As云中云滴数浓度最大值比冷涡影响的As-Sc云系高一倍;液态水含量方面,高空槽系统下As云中在0℃附近取得最大值,冷涡系统下As-Sc云系中,最大值出现在上层As云中-4.8℃左右处。高空槽系统影响下的As云中,FSSP-100、2D-C和2D-P探测到的粒子数浓度、含水量和平均直径随高度呈不均匀性分布;而冷涡影响的As-Sc云中,FSSP-100测得As云中粒子平均直径远大于Sc,2D-C和2D-P探测到的上层As云中粒子浓度和液态含水量分布相对均匀,而下层Sc中粒子浓度、液态含水量值和平均直径都很小,这是由于云层之间存在干层,使As云中的部分大云滴和雨滴在下降过程中迅速蒸发,不利于降水形成。不同高度层FSSP-100测得的粒子平均谱分布均差异较大。对云中可播性进行研究,结果发现高空槽影响的As云中可播区均为强可播区,冷涡系统影响的As-Sc云中可播区的1/2为强可播区。  相似文献   

7.
刘海月  李云川 《气象》1996,22(5):48-51
对1991年4月16日影响河北地区中南部的一次西槽天气过程形成的降水性层状云微物理结构进行了分析。结果表明,降水主要发生在层状云的中上层,存在可供催化的过冷层和过冷水,但云体下层的供水云较薄,云底偏高,不利于降水的发展;实施人工增雨作业后,云层微结构出现相应变化(云滴和雨滴含水量增加,滴谱拓宽等)作业区与影响区雨量普遍增加,并与催化时间相吻合,这些可能与人工影响有关。  相似文献   

8.
王俊 《山东气象》2003,23(2):9-11
统计分析了降水性层状云系中过冷水出现的频率、过冷水区尺度、云水含量的分布特征,以及云中总的粒子尺度谱,为人工增雨作业提供重要依据。  相似文献   

9.
开展卫星反演云特性参数与飞机观测的对比研究,对于更好地发挥卫星遥感观测在天气、云物理和人工影响天气方面的探测优势具有重要意义。选取2012年9月21日一次层状云降水过程,对比分析FY-2与MODIS反演云参数及飞机观测结果,探索了飞机检验卫星云参数的飞行方案。结果表明:FY-2反演云参数演变趋势与飞机观测结果有较好的一致性;FY-2反演有效粒子半径(Effective Radius,Re)和光学厚度(τ)与MODIS反演的Re和τ间相关性较好,但此个例FY-2反演值普遍小于MODIS反演值;探测区域FY-2反演Re频率分布与飞机观测Re分布有一定差异,FY-2反演Re偏小,MODIS反演Re频率分布与飞机观测结果更为接近;飞机观测计算得到的τ和液水路径值(Liquid WaterPath,LWP)与卫星反演τ和LWP差异较大,FY-2反演值明显偏小。对于Re的检验,飞机最好在Re分布不大均匀的云顶作较长距离平飞观测;对于LWP和τ等垂直积分参量的检验,飞机最好选择在光学厚度较均匀的小区域内螺旋爬升至云顶之上,再自云顶向下至最低高度进行垂直观测。  相似文献   

10.
山东一次暴雨过程的云降水微物理特征分析   总被引:4,自引:1,他引:4  
周黎明  王庆  龚佃利  李芳 《气象》2015,41(2):192-199
以2013年7月29日发生在山东的一次暴雨过程为例,利用高空间分辨率的MODIS极轨卫星资料以及布设在章丘的THIES激光雨滴谱仪连续采样获取的降水粒子谱资料,并采用Rosenfeld等提出的云微物理分析方法,对云和降水的微物理特征进行了分析。结果发现,这个暴雨云团由多种不同高度的云系组成,其中对流云团在-10℃以上存在深厚的混合相增长带和冰化增长带,冰化增长起始温度基本都在-20℃左右。系统性层云中存在凝结增长、碰并增长和混合相增长过程,但无冰化增长过程。此降水过程多次出现强度>100 mm·h-1的高雨强值,最大雨滴数浓度达104量级,并存在接近8 mm的特大滴,降水强度与雨滴数浓度和谱宽的关系极为密切;直径>2 mm的雨滴数浓度不足1%,但对降水的贡献却占绝大多数。从雨滴谱谱型分布来看,多峰型结构所占比例最大,单峰型次之,指数型分布出现频率最少。  相似文献   

11.
The Tibetan Plateau (TP) plays an important role in formation and development of the East Asian atmospheric circulation, climate variability, and disastrous weathers in China. Among the many topics on TP meteorology, it is critical to understand the microphysical characteristics of clouds over the TP;however, observations of the cloud microphysics in this area are insufficient mainly due to sparse stations and limited cloud physical data. The Visible Infrared Imaging Radiometer Suite (VⅡRS), onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite, has an improved imaging spectroradiometer with 17 channels of 750-m moderate resolution and 5 channels of 375-m image resolution. The high-resolution instrument has an advantage for observing the small or initial convective clouds. Based on the methodologies that we proposed before for retrieving cloud microphysical properties from SNPP, an automated mapping software package named Automatic Mapping of Convective Clouds (AMCC) has been developed at the scale of satellite swath. The properties of convective clouds are retrieved by AMCC and their values are averaged over 0.33°×0.33° grids based on the SNPP/VⅡRS satellite data over the TP during the summers of 2013-17. The results show that:(1) the temperature of lifting condensation level (TLCL) at Naqu meteorological station and the cloud base temperature (Tb) retrieved from VⅡRS are linearly correlated, with a correlation coefficient of 0.87 and standard deviation (STD) of 3.0℃;(2) convective clouds over the TP have the following macro-and microphysical properties. First, the cloud base temperature (Tb) is about -5℃, the cloud base height above the ground (Hb) ranges between 1800 and 2200 m, and the cloud water content is low. Second, the cloud condensation nuclei concentration (NCCN) is between 200 and 400 mg-1 with 0.7% in maximum supersaturation (Smax);consequently, the condensation growth of water cloud droplet with less NCCN and higher Smax is fast. Third, because the precipitation initiation depth (D14) varies within 1500-2000 m and 500-1000 m at the Yarlung Zangbo River basin and southern Tibet, respectively, the clouds over these areas are more prone to precipitation. Fourth, mean height of the cloud top above sea level (Htop) is between 10 and 13 km, but the cloud depth (Dcld) is rather small, which is about 5000 m in southern TP and gradually reduces to 2500 m in northern TP. Fifth, the glaciation temperature (Tg) ranges from -30℃ in central and southern TP to -25℃ in northern TP, which, combined with the warmer Tg and the Tb less than 0℃, leads to the domination of ice process in the clouds;(3) the macro-and microphysical properties of convective clouds over the TP explain why rainfall there is frequent and lasts over a short time with small amount and large rain drops.  相似文献   

12.
2017—2020年利用运-12和空中国王-E350飞机搭载的国产云粒子测量设备在云南开展了76架次积层混合云观测, 数据分析表明:云南的云粒子数浓度远高于华北地区, 云粒子(直径为2~50 μm)数浓度平均值为339.7 cm-3, 最大值为1067.6 cm-3, 平均含水量为0.181 g·m-3, 最大值为2.827 g·m-3, 有效直径平均值为11.2 μm, 最大值为34.6 μm。云粒子谱呈负指数双峰分布, 主、次峰值分别出现在4 μm和10 μm处。云粒子数浓度、含水量和消光系数随高度呈明显分层特征, 有效直径随高度变化不明显, 反射率因子在3.4 km高度最大。暖云区200~1500 μm范围的雨滴粒子平均含水量为0.183 g·m-3, 最大值为4.247 g·m-3, 200~6000 μm范围的雨粒子平均含水量为0.406 g·m-3, 最大值为8.917 g·m-3。不同含水量条件下的云粒子谱宽不同, 随着云中含水量增加, 云粒子谱变宽。西南夏季风爆发后, 暖云区的小云粒子增多, 大云粒子减少, 开展暖云区人工增雨作业有利于提高人工增雨效率。  相似文献   

13.
山东降水云系微物理结构数值模拟和播云条件分析   总被引:3,自引:2,他引:3  
龚佃利  王俊  刘诗军 《高原气象》2006,25(4):723-730
利用MM5V3.5中尺度数值模式和现有基本气象业务资料,对主要影响山东的2003年4月17日春季暴雨和2002年10月24~25日秋季冷锋降水过程进行数值预报,在预报效果较为理想的基础上,利用模式输出资料,特别是利用Reisner霰方案计算的云水、雨水、冰晶、雪和霰比含量数值,分析了中尺度对流云系不同发展阶段、冷锋层状云系不同部位的云降水微物理结构特征和差异,展示了背景场动力、热力和水汽输送等条件在云降水过程中的主导作用,并分析了降水云层可进行人工催化的条件。  相似文献   

14.
显式云物理方案的研究进展   总被引:4,自引:1,他引:4  
史月琴  楼小凤 《气象科技》2006,34(5):513-520
回顾了近年来显式云物理方案的研究进展。显式云方案主要有体积水方法和详细微物理方法(分档法)。体积水方法有单参数和双参数两种谱描述方法,根据模式预报变量和物理过程的不同,可以分为暖云方案、简单冰相方案和复杂冰相方案。详细的微物理方法由于预报变量繁多、计算量巨大而一般多应用于研究工作。不同的模式,有不同的显式云方案,并不是粒子分类越复杂模拟效果就越好,需要根据研究的重点、计算资源的许可选择使用不同的物理方案。物理过程参数化需要建立在理论和实验研究的基础上,因此应加强这方面的理论和实验研究,使物理参数化具有更坚实的物理基础。  相似文献   

15.
利用毫米波测云雷达反演层状云中过冷水   总被引:1,自引:0,他引:1  
毫米波测云雷达已成为研究云内微物理参数的有效工具,利用其从混合相云中识别出过冷水,对人工影响天气及预防飞机积冰具有重要意义,对我国毫米波雷达的数据处理也具有借鉴作用。本文利用英国的35 GHz、94 GHz测云雷达,结合激光雷达和探空资料,采用阈值法,反演分析了层状云中的过冷水。结果表明:(1)毫米波雷达联合激光雷达可以识别层状云中的过冷水,其结果与微波辐射计测量的液态水路径或毫米波雷达的双峰谱相符合;(2)利用多普勒速度的双峰谱可以反演混合相云中的过冷水含量、冰晶含水量。混合相云的雷达反射率因子主要取决于冰晶,根据雷达反射率因子反演会低估云内液态水含量;(3)本次层状云降水的亮带以上含有较多过冷水,此处35 GHz的雷达回波强度随冰晶的增大而减弱,且冰晶的含水量主导了总液态水含量。  相似文献   

16.
AgI焰剂对层状云催化的数值模拟   总被引:1,自引:0,他引:1  
使用包含详细微物理过程的一维层状云全分档模式,并加入AgI焰剂催化方案,对2007年吉林省长春市一次层状云降水过程进行AgI播撒试验。分别选取云内过冷水含量峰值区(4000 m)、最大冰面过饱和度区(5000 m)和低温度区(5500 m)作为播撒试验区,播撒时间选择云体未充分发展阶段和充分发展阶段。结果显示,在同等播撒剂量下,地面降水对云内AgI播撒高度较为敏感。ST2方案模拟400 min后地面累计降水量增加10.4%。同等条件下,播撒时间越早,催化效果越佳。在充分发展的云体内播撒AgI焰剂,40 min后云内过冷水含水量减少70%以上,表明云内过冷水消耗量与地面雨强增加量之间具有良好的正相关性。4种播撒方案均显示,云内AgI主要靠凝华核化机制产生冰晶,而接触核化机制对AgI核化过程贡献较小。与未催化云体相比,催化后云内冰晶粒子总凝华速率增加明显。同时,地面雨强增加,最大雷达回波强度减小。地面水滴粒子谱分布显示,相比于未播撒时,各播撒方案均使直径400 μm左右的水滴粒子浓度增加1个数量级以上,而水滴粒子谱宽均略有下降,这表明AgI播撒后主要通过增加可降水粒子数量来影响地面降水强度和累计雨量,而对降水粒子谱型拓宽的贡献有限。  相似文献   

17.
华北层状冷云降水微物理特征及人工增雨可播性研究   总被引:4,自引:1,他引:4  
孙鸿娉  李培仁  闫世明  孙国德  晋立军  封秋娟 《气象》2011,37(10):1252-1261
利用DMT探测平台对2009年3月11日山西云降水观测外场试验区的一次云降水过程实施了综合探测,综合分析了此次云降水过程的宏微观物理特征。计算了云中过冷水含量距0℃层高度(1500m)的垂直分布:云中过冷水含量最大值出现在0℃层高度以上400 m处,其最大值为0.416 g·m^-3,之后随着距0℃层高度的增加,云中过冷水含量迅速减小,到0℃层高度以上600 m处基本为最低,之后直到云顶,云中过冷水含量维持低值。CDP探头探测的云中粒子浓度以及CIP探头探测的云中大粒子浓度应作为判别云中可播度的两项主要指标,CDP探测的粒子浓度不小于30个·cm^-3的云区才具有一定的可播度,其中CIP探测的大粒子浓度小于10个·cm^-3时,可确定为强可播区。云滴浓度随高度变化呈多峰分布,云中粒子谱型主要为双峰或多峰型。此探测过程中典型区域的粒子谱中均出现第二峰值的区段,分析表明只有当云粒子浓度不小于30个·cm^-3时,相应云区才具有一定的可播度。  相似文献   

18.
层状云催化后过冷水分布与演变规律的数值模拟   总被引:4,自引:4,他引:4  
刘晓莉  牛生杰  陈跃 《大气科学》2006,30(4):561-569
在郭学良等(1999年)发展的层状云雨滴分档模式中加入冰晶繁生过程,模拟了碘化银和液态二氧化碳的催化效率以及催化后云中过冷水的分布与演变过程.结果表明:碘化银和液态二氧化碳在5200~5600 m高度上的催化效率相当,最大达到11.1%;液态二氧化碳在2600~3000 m高度层的催化效率明显增大,达到14.2%;模式云被催化后,云中云水含量在200 min都较未催化时增长0.05 g/m3以上,表现出云中过冷水被消耗后的恢复趋势;碘化银和液态二氧化碳对云体催化后,云中水汽含量减少0.5~2 g/m3,对过冷水的恢复作出贡献;催化过程使得模式云中雨滴浓度在210 rin时较未催化时减少73%,在240 min时较未催化时增加309%.得出了两点结论:(1)模式云被催化后,云中过冷水在200 rin表现出恢复趋势,云中水汽对过冷水的恢复过程作出了贡献;(2)在过冷水较多的区域播撒液态二氧化碳可以取得较好的催化效率.  相似文献   

19.
吕玉环  雷恒池  魏蕾 《气象科技》2021,49(3):455-463
对2009-2011年内蒙古通辽地区41架次穿云飞行探测结果进行统计分析,探讨中国北方典型地区的各类型云的微观特征.结果表明:该地区不同云型的平均云滴粒子数浓度Nc按大小排序为:层积云Sc>积云Cu>高层云As>雨层云Ns>高积云Ac.降水性云(Ns,As和Sc)的Nc值一般跨度范围较大,且累计概率的减小幅度较为平缓....  相似文献   

20.
吉林省一次层状云降水宏微观特征的观测研究   总被引:5,自引:0,他引:5  
利用长春2004年7月5日一次降水过程的飞机观测资料,结合天气图、卫星云图及雷达回波等资料,综合分析了本次热带气旋影响下降水过程中云系的宏微观特征.研究表明,降水性层状云微观垂直结构配置可以分为4个发展层:云顶附近是核化和凝华增长区;-4~-7 ℃为云滴和冰粒子活跃增长层;0~-4 ℃为固态粒子聚合及云滴蒸发层;0 ℃层以下是雨滴碰并增长和云滴凝结增长区.2D-P观测的粒子的平均直径、最大直径、峰值直径的峰值集中在融化层附近,与融化层回波亮带对应.用同一种形式的密度分布函数N(r)=mrfexp(-ar br2-cr3)来拟合暖层小云滴、大云滴和雨滴的谱分布,拟合结果与观测的谱分布吻合较好,拟合出的平均直径、均方根直径、数浓度以及含水量与观测值也较接近,相对误差小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号