首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   

2.
Tsunami education activities, materials, and programs are recognized by the National Tsunami Hazard Mitigation Program (NTHMP) as the essential tool for near-source tsunami mitigation. Prior to the NTHMP, there were no state tsunami education programs outside of Hawaii and few earthquake education materials included tsunami hazards. In the first year of the NTHMP, a Strategic Plan was developed providing the framework for mitigation projects in the program. The Strategic Plan identifies education as the first of five mitigation strategic planning areas and targets a number of user groups, including schools, businesses, tourists, seasonal workers, planners, government officials, and the general public. In the 6 years of the NTHMP tsunami education programs have been developed in all five Pacific States and include print, electronic and video/film products, curriculum, signage, fairs and workshops, and public service announcements. Multi-state education projects supported by the NTHMP include TsuInfo, a bi-monthly newsletter, and Surviving a Tsunami, a booklet illustrating lessons from the 1960 Chilean tsunami. An additional education component is provided by the Public Affairs Working Group (PAWG) that promotes media coverage of tsunamis and the NTHMP. Assessment surveys conducted in Oregon, Washington, and Northern California show an increase in tsunami awareness and recognition of tsunami hazards among the general population since the NTHMP inception.  相似文献   

3.
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a State-driven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decision-makers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.  相似文献   

4.
In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years.  相似文献   

5.
The first 7 years of the National Tsunami Hazard Mitigation Program (NTHMP) have had a significant positive impact on operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC). As a result of its seismic project, the amount and quality of real-time seismic data flowing into PTWC has increased dramatically, enabling more rapid, accurate, and detailed analyses of seismic events with tsunamigenic potential. Its tsunameter project is now providing real-time tsunameter data from seven strategic locations in the deep ocean to more accurately measure tsunami waves as they propagate from likely source regions toward shorelines at risk. These data have already been used operationally to help evaluate potential tsunami threats. A new type of tsunami run-up gauge has been deployed in Hawaii to more rapidly assess local tsunamis. Lastly, numerical modeling of tsunamis done with support from the NTHMP is beginning to provide tools for real-time tsunami forecasting that should reduce the incidence of unnecessary warnings and provide more accurate forecasts for destructive tsunamis.  相似文献   

6.
The National Tsunami Hazard Mitigation Program is a multi-faceted approach that encompasses tsunami identification, alert and warning systems and a comprehensive approach to tsunami risk reduction. This paper describes efforts to promote land use planning and development practices that reduce tsunami risk by local elected government and administrative officials. Seven Principles of Tsunami Risk Reduction are presented that range from risk assessment to site planning criteria.Regional Administrator, California Governors Office of Emergency Services and Manager, California Integrated Seismic Network, Earthquake and Tsunami Program  相似文献   

7.
Even advanced technological societies are vulnerable to natural disasters, such as the 2011 Tohoku earthquake and tsunami, and financial disasters, such as the 2008 collapse of the US housing and financial markets. Both resulted from unrecognized or underappreciated weaknesses in hazard assessment and mitigation policies. These policies relied on models that proved inadequate for reasons including inaccurate conceptualization of the problem, use of a too-short historic record, and neglect of interconnections. Japanese hazard models did not consider the possibility of multiple fault segments failing together, causing a much larger earthquake than anticipated, and neglected historical data for much larger tsunamis than planned for. Mitigation planning underestimated the vulnerability of nuclear power plants, due to a belief in nuclear safety. The US economic models did not consider the hazard that would result if many homeowners could not pay their mortgages, and assumed, based on a short history, that housing prices would keep rising faster than interest rates. They did not anticipate the vulnerability of the financial system to a drop in housing prices, due to belief that markets functioned best without government regulation. Preventing both types of disasters from recurring involves balancing the costs and benefits of mitigation policies. A crucial aspect of this balancing is that the benefits must be estimated using models with significant uncertainties to infer the probabilities of the future events, as we illustrate using a simple model for tsunami mitigation. Improving hazard models is important because overestimating or underestimating the hazard leads to too much or too little mitigation. Thus, although one type of disaster has natural causes and the other has economic causes, comparison provides insights for improving hazard assessment and mitigation policies. Instead of viewing such disasters as unpredictable and unavoidable “black swan” events, they are better viewed as “gray swans” that—although novel and outside recent experience—can be better foreseen and mitigated.  相似文献   

8.
城市泥石流灾害预警问题探讨   总被引:1,自引:0,他引:1  
唐川 《地球科学进展》2008,23(5):546-552
随着城市灾害日益加剧,城市安全引起更广泛的关注,加强防御、控制城市泥石流灾害,增强城市综合减灾抗灾能力是泥石流减灾工作的重点。近几十年来,泥石流预警减灾的作用已得到了高度重视,探讨现代预警技术方法目的在于为城市减灾提供可靠的应急防灾对策。指出改进目前城市泥石流监测预警状况可以大大减轻泥石流暴发带来的损失。在分析国内外泥石流预警研究进展的基础上,针对目前存在的问题,提出当前城市泥石流防灾研究中应重视开展预警工作,注重将泥石流预警与形成机制、新技术方法和减灾决策系统等相结合,其中要特别加强城市数字减灾系统、城市防灾预案,以及城市风险管理和损失评估系统的综合研究。  相似文献   

9.
The public and the decision and policy makers who serve themtoo often have a view of community risks that is influenced and distorted significantlyby media exposure and common misconceptions. The regulators and managers, responsible forplanning and coordination of a community's mitigation, preparedness, response and recoveryefforts, are originated from a variety of disciplines and levels of education. Not only mustthese individuals deal with the misconceptions of their communities, but also frequently lacka basic methodology for the assessment of risks. The effective planning of mitigation andresponse are, however, directly dependent upon the understanding of the complexities, types,and nature of risks faced by the community, determining the susceptible areas, and conceptualizinghuman vulnerability.In this study, a review of the existing literature on both theconceptual underpinnings of risk and its assessment is attempted. A standardized framework is proposedfor use by all emergency managers, regardless of training or education. This frameworkconsists of the numerical ranking of the frequency of the event in the community, multiplied bya numerical ranking of the severity or magnitude of an event in a given community, based upon thepotential impact characteristics of a `worst-case' scenario. This figure is then multipliedby a numerical ranking indicating the Social Consequence; a combination of community perception ofrisk level and collective will to address the problem. The resulting score, which is notstrictly scientific, would permit emergency managers from a variety of backgrounds to comparelevels of community exposure to such disparate events as hazardous materials spills andtornadoes, and to set priorities for both mitigation efforts and for the acquisition of response needs,within the availability of community resources.  相似文献   

10.
Large-scale vulnerability assessments for natural hazards   总被引:3,自引:1,他引:2  
This article examines the process by which vulnerability analysis takes place at the state level for State Hazard Mitigation Plans, as required by the Disaster Mitigation Act of 2000. The methods developed by the Center for Hazards Research and Policy Development at the University of Louisville are described, followed by a brief discussion on issues and challenges. A key finding in this article is the need to understand the impact and role of vulnerability analysis on planning and policy-making at the state and local level, as it applies to the investment of funding and resources in hazard mitigation. Recommendations for policy as well as directions in future research are offered in conclusion.  相似文献   

11.
Microzonation is an effort to evaluate and map potential hazards found in an area, urban area in particular, that could be induced by strong ground shaking during an earthquake. These hazards include: ground motion amplification, liquefaction, and slope failure. The microzonation maps, depicting ground-motion amplification, liquefaction, and landslide potentials, can be produced if the ground motion on bedrock (input) and the site conditions are known. These maps, in combination with ground-motion hazard maps (on bedrock), can be used to develop a variety of hazard mitigation strategies such as seismic risk assessment, emergency response and preparedness, and land-use planning. However, these maps have certain limitations that result from the nature of regional mapping, data limitations, generalization, and computer modeling. These microzonations show that when strong ground shaking occurs, damage is more likely to occur, or be more severe, in the higher hazard areas. The zones shown on the hazard maps should not serve as a substitute for site-specific evaluations.  相似文献   

12.
4·20芦山地震不仅造成了特大地震灾害,同时还诱发大量的次生山地灾害,主要类型包括崩塌、滑坡、滚石、落石、堰塞湖和泥石流等。这些次生灾害不仅造成重大人员伤亡,还阻塞救援道路,延缓了救援进度。地震诱发的大量崩塌、滑坡为泥石流活动提供丰富物源,将促进泥石流活跃,在后期暴雨作用下产生严重的泥石流灾害。通过初步分析,提出了地震区山地灾害应急减灾对策,包括应急排查、监测预警、临时安置场所危险性评估、省道210线应急防护;并提出了地震区恢复重建中的减灾对策,包括提高山区城镇的防护能力,加强村寨聚落防灾能力,加强山地灾害监测预警,道路恢复重建中的减灾措施以及加强对流域漂木防治。  相似文献   

13.
城市突发性地质灾害应急系统探讨   总被引:10,自引:0,他引:10  
城市突发性地质灾害是当今减灾的重点,已引起了广泛的关注。人们意识到灾后及时地采取应急抢险救援措施,可以有效地减少人员伤亡。灾害应急行动包括建立应急指挥机构,明确职责,并进行资源调配。灾害应急抢险救灾时实性强,其快速反应行动涉及危机管理、预警、撤离、避险,以及维护法律与社会秩序、信息通报、灾情评估。应急救援行动还包括城市基础和生命线的恢复,以确保受灾居民和社区的基本需求。论文在分析城市突发性地质灾害应急管理进展和存在问题的基础上,探讨了当前城市地质灾害应急反应系统中的监测预警系统、快速反应系统、应急指挥系统、应急避难系统、信息发布系统、空间信息系统和宣传教育系统:通过实施这些应急系统并制定预案可以达到减轻城市突发性地质灾害的目的。  相似文献   

14.
Taiwan has long made efforts to increase community emergency response capability, due to its vulnerability to earthquakes, typhoons, landslides and debris flows. Not until recent major natural disasters, such as the 1999 Chi–Chi Earthquake, Typhoon Toraji and Typhoon Nari, has the government reformed its policy toward empowering the community to take actions in hazard mitigation, emergency preparedness and emergency response. A new initiatve, Integrated Community-Based Disaster Management Program (ICBDM), was launched in 2001 by the Executive Yuan to achieve the goal of strengthening community resistance. The paper, taking Shang-An Village as an example, describes Taiwan’s new community-based disaster management program. Through a participatory process, community residents have learned how to analyze vulnerable conditions, discover problems, develop solutions and establish an organization to implement disaster management tasks. Further, basic response training courses and a disaster scenario were held in order to improve their emergency response capability. Based on the case study, a phased process, including initiation, assessment, planning and practice, is generalized.  相似文献   

15.
Cuartas  J. B.  Frazier  Tim  Wood  Erik 《Natural Hazards》2021,108(3):2919-2938

How societies organize themselves to respond to cascading impacts exacerbated by climate change will help define the future of disaster planning, mitigation, response, and recovery. Current emergency management risk analyses focus on identifying a broad array of threats and hazards that may affect an area. However, there is limited attention and understanding of the totality of hazard impacts, the relationship of consequences across disasters, and the dangers of not addressing critical capabilities necessary to rapidly managing consequences—including the potential to create new incidents within incidents. Through a focused review of the related literature and guiding policy documents, this study aims to provide a cascading consequence-based framework that can support emergency managers in the analysis of their jurisdictional risks, development of emergency operations plans, and decision-making. Results include the identification of an alternative framework to identify cascading networks, the creation of a supplementary model for downstream risk assessment, and refined Threat and Hazard Identification and Risk Analysis (THIRA) outputs for improved grant allocation. The proposed framework has the potential to help organizations factor both conspicuous and downstream consequences into their Emergency Operations Plans in the planning and mitigations phases. This proposed refinement, which looks deeper into the progression of a disaster, has both national and international implications.

  相似文献   

16.
重大地质灾害应急响应技术支撑体系研究   总被引:3,自引:0,他引:3  
刘传正  陈红旗  韩冰  陈辉 《地质通报》2010,29(1):147-156
地质灾害应急响应是一种涉及因素多、技术含量高、时间要求紧、工作任务重和社会影响大的危机事件管理行为,也是一种跨阶段、高要求、大集成、快反应和求实效的非常规防灾减灾行动。针对重大地质灾害的应急响应,为了探索减小地质风险和在风险下生存的途径,必须创建一个有灾害意识、有充分准备的政府或社区应急管理技术支撑体系。技术体系包括人才团队、技术装备、理论方法等方面。人才团队要求科学技术素养深厚,工作高效实用;技术装备要求简单、快速并有效;理论方法追求支撑防灾减灾决策的"满意解"或"有用解"。技术支撑具体针对地质灾害"险情应急"和"灾情应急"2种类型,前者突出预测预警与应急处置的防灾方法,后者重在成因分析与减灾行动。工作程序上划分为响应启动、调查评价、监测预警、会商定性、防控论证、决策指挥、实施检验和总结完善8个阶段。技术路线包括地质环境信息获取、分析研判、预测预警、模拟仿真、技术方案论证、风险评估与决策支持6个步骤。为了促进地质灾害应急响应从经验走向科学,从感性判断走向理性量化,尽快提升和加强对重大地质灾害应急管理的技术支撑能力,立足于国家层面的决策需求初步提出了重大地质灾害应急响应的科学技术工作框架体系。  相似文献   

17.
Shabana Khan 《Natural Hazards》2012,64(2):1587-1607
An understanding of vulnerability is not only crucial for the survival of the exposed communities to extreme events, but also for their adaptation to climate change. Vulnerability affects community participation in hazard mitigation, influences emergency response and governs adaptive capacity for the changing environmental and hazards characteristics. However, despite increased awareness, assessments and understanding of the processes that produce vulnerability, disaster risks prevail. This raises questions on the effectiveness of vulnerability assessments and their applications for hazard mitigation and adaptation. The literature includes a range of vulnerability assessment methods, wherein frequently the selection of any particular method is governed by the research objectives. On the other hand, hazard mitigation plans and policies even though mention vulnerability, their implementation pays less attention to the variations in its nature and underlying causes. This paper explores possible reasons for such gaps by exploring a case study of the Hutt Valley, New Zealand. It brings out the limitations of different vulnerability assessment methods in representing the local vulnerability and challenges they bring in planning for the vulnerability reduction. It argues that vulnerability assessment based on any particular method, such as deprivation index, principle component analysis, composite vulnerability index with or without weight, may not reveal the actual vulnerability of a place, and therefore, a comprehensive vulnerability assessment is needed.  相似文献   

18.
Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.  相似文献   

19.
The Indian Ocean tsunami (IOT) of December 2004 has demonstrated that the coasts of Australia are vulnerable to tsunami flooding. As a consequence of the IOT, the Australian Federal Treasurer announced in 2005 that the Bureau of Meteorology and Geoscience Australia will jointly develop and implement the Australian Tsunami Warning System. Effective response to tsunami warnings is highly dependent on public awareness and perception of tsunami hazard and risk. At present, no efforts have been made to investigate and publish public awareness of tsunami hazard and risk and as such, emergency managers have little idea of the likely challenges to effecting appropriate tsunami risk management. We develop a short questionnaire survey instrument and trial that instrument in order to investigate its suitability for generating information about the perceptions of tsunami hazard and risk in the Sydney region. We found that the design, layout and format of the questionnaire were suitable for our purpose and should be useful for generating information appropriate to emergency management agencies tasked with the responsibility of developing tsunami education campaigns and risk mitigation strategies in Australia. However, certain limitations, such as individual question design and format, should be considered before a much larger survey of various stakeholders is conducted.  相似文献   

20.
In this paper, we seek to resolve the conflicting findings in literature about the effect of past hazard experience on response to warning. We find that different definitions of past experience in different studies are at the root of these conflicting findings. We disaggregate past experience into different types, identifying three types of past experiences that are most relevant in terms of affecting response. We test the relevance and importance of these three proposed types of past experience in an empirical context of warnings issued and response to these warning for two cyclonic events in India. We then provide the implications of the most relevant aspects of past hazard experience for emergency managers seeking to improve target audiences’ response to warning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号