首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hamiltonian formalism was recently applied by Getino (1995a,b) for the study of the rotation of a non-rigid earth with a heterogeneous and stratified liquid core. That earth model is generalized here by including the effect of the dissipation arising from the mantle-core interaction, using a model similar to that of Sasao, Okubo & Saito (1980), which includes both viscous and electromagnetic coupling. First, a solution for the free nutations is obtained following a classical approach, which in our opinion is more familiar to most of the readers than the Hamiltonian treatment. This solution provides a theoretical basis clear enough to study both the qualitative and quantitative effects of the dissipations considered in the hypotheses. The main qualitative features are, besides the delays, that the free core nutation (FCN) suffers an exponential damping, while the chandler wobble (CW) is not damped at first order, by the dissipation considered. The numerical values obtained for the complex compliances agree with the most recent experimental computations.
Next, the problem is studied under a Hamiltonian formalism, and a solution equivalent to the above is obtained. Besides its interest from a theoretical point of view, this formalism is necessary in order to apply canonical perturbation methods in order to obtain analytical nutation series.  相似文献   

2.
3.
4.
5.
6.
7.
Polar motion is modelled for the large 2004 Sumatra earthquake via dislocation theory for an incompressible elastic earth model, where inertia perturbations are due to earthquake-triggered topography of density–contrast interfaces, and for a compressible model, where inertia perturbation due to compression-dilatation of Earth's material is included; density and elastic parameters are based on a multilayered reference Earth. Both models are based on analytical Green's functions, propagated from the centre to the Earth's surface. Preliminary and updated seismological solutions are considered in elucidating the effects of improving earthquake parameters on polar motion. The large Sumatra thrust earthquake was particularly efficient in driving polar motion since it was responsible for large material displacements occurring orthogonally to the strike of the earthquake and to the Earth's surface, as imaged by GRACE gravity anomalies over the earthquake area. The effects of earthquake-induced topography are four times larger than the effects of Earth's compressibility, for l = 2 geopotential components. For varying compressional Earth properties and seismic solution, modelled polar motion ranges from 8.6 to 9.4 cm in amplitude and between 117° and 130° east longitude in direction. The close relationship between polar motion direction, earthquake longitude and thrust nature of the event, are established in terms of basic physical concepts.  相似文献   

8.
Summary. The pole tide is the response of the ocean to incremental centrifugal forces associated with the Chandler wobble. The tide has a potentially important effect on the period and damping of the wobble, but it is at present not well constrained by observations. Here, we construct both analytical and numerical models for the pole tide. The analytical models consider the tide first in a global ocean and then in an enclosed basin on a beta-plane. The results are found to approach equilibrium linearly with decreasing frequency and inversely with increasing basin depth. The numerical models solve Laplace's tidal equations over the world's oceans using realistic continental boundaries and bottom topography. The results indicate that the effects of the non-equilibrium portion of the deep ocean tide on the Chandler wobble period and damping are negligible.  相似文献   

9.
10.
We analyse the external field generated by a uniform distribution of magnetic susceptibility contained in an oblate spheroidal shell when it is magnetized by an internal magnetic field of arbitrary complexity. The situation is more relevant to the Earth than that of a spherical shell considered by Runcorn (1975a ) (in the context of lunar magnetism), because of the larger flattening of the Earth than that of the Moon. We find that, to first order in the susceptibility, each internal harmonic in a spheroidal harmonic expansion of the magnetic potential generates just one non-vanishing external field coefficient, unlike in the spherical case when all harmonics vanish identically. The field generated is proportional to the susceptibility, thickness of the shell and square of the Earth's eccentricity, and hence it appears that this field amplification mechanism will be very ineffective for the Earth.  相似文献   

11.
The crystal structure of iron in the Earth's inner core   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
Properties of iron at the Earth's core conditions   总被引:2,自引:0,他引:2  
Summary. The phase diagram of iron up to 330 GPa is solved using the experimental data of static high pressure (up to 11 GPa) and the experimental data of shock wave data (up to 250 GPa). A solution for the highest triple point is found ( P = 280 GPa and T = 5760 K) by imposing the thermodynamic constraints of triple points. This pressure of the triple point is less than the pressure of the inner core–outer core boundary of the Earth. These results indicate that the density of iron at the inner core–outer core boundary pressure is close to 13 g cm−3, which lies close to the seismic solutions of the Earth at that pressure. It is thus concluded that the Earth's inner core is very likely to be virtually pure iron in its hexagonal close packed (hcp) phase.
It is shown that four properties of the Earth's inner core determined from seismology are close in value to the corresponding properties of hcp iron at inner core conditions: density, bulk modulus, longitudinal velocity, and Poisson's ratio. The density–pressure profile of hcp iron at inner core conditions matches the density–pressure profile of the inner core as determined by seismic methods, within the spread of values given by recent seismic models.
This indicates that the Earth is slowly cooling, the Earth's inner core is growing by crystallization, and the impurities of the core are concentrated in the outer core. The calculated temperature at the Earth's centre is 6450 K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号