首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a spherically symmetric general relativistic perfect fluid in its comoving frame. It is found that, by integrating the local energy momentum conservation equation, a general form of g 00 can be obtained. During this study, we get a cue that an adiabatically evolving uniform density isolated sphere having ρ(r,t)=ρ 0(t), should comprise “dust” having p 0(t)=0; as recently suggested by Durgapal and Fuloria (J. Mod. Phys. 1:143, 2010) In fact, we offer here an independent proof to this effect. But much more importantly, we find that for the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) metric having p(r,t)=p 0(t) and ρ(r,t)=ρ 0(t), \(g_{00} = e^{-2p_{0}/(p_{0} +\rho_{0})}\). But in general relativity (GR), one can choose an arbitrary tt ?=f(t) without any loss of generality, and thus set g 00(t ?)=1. And since pressure is a scalar, this implies that p 0(t ?)=p 0(t)=0 in the Big-Bang model based on the FRW metric. This result gets confirmed by the fact the homogeneous dust metric having p(r,t)=p 0(t)=0 and ρ(r,t)=ρ 0(t) and the FRW metric are exactly identical. In other words, both the cases correspond to the same Einstein tensor \(G^{a}_{b}\) because they intrinsically have the same energy momentum tensor \(T^{a}_{b}=\operatorname {diag}[\rho_{0}(t), 0,0, 0]\).  相似文献   

2.
We consider generalized teleparallel gravity in the flat FRW universe with a viable power-law f(T) model. We construct its equation of state and deceleration parameters which give accelerated expansion of the universe in quintessence era for the obtained scale factor. Further, we develop correspondence of f(T) model with scalar field models such as, quintessence, tachyon, K-essence and dilaton. The dynamics of scalar field as well as scalar potential of these models indicate the expansion of the universe with acceleration in the f(T) gravity scenario.  相似文献   

3.
4.
We study the validity of the generalized second law (GSL) of gravitational thermodynamics in a non-flat FRW universe containing the interacting in f(T) gravity. We consider that the boundary of the universe to be confined by the dynamical apparent horizon in FRW universe. In general, we discuss the effective equation of state, deceleration parameter and GLS in this framewok. Also, we find that the interacting-term Q modifies these quantities and in particular, the evolution of the total entropy, results in an increases on the GLS of thermodynamic, by a factor $4\pi R_{A}^{3} Q/3$ . By using a viable f(T) gravity with an exponential dependence on the torsion, we develop a model where the interaction term is related to the total energy density of matter. Here, we find that a crossing of phantom divide line is possible for the interacting-f(T) model.  相似文献   

5.
A viscous fluid cosmological model in presence of magnetic field and zero-mass scalar fields is developed. The non-negativity condition of viscous fluid pressure prescribes a certain minimum value oft vis-a-vis of the scale factorQ(t) and at this epoch the model is found to be singularity free.  相似文献   

6.
We study Bianchi type I cosmological model in the presence of magnetized anisotropic dark energy. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS p=ω ρ and a uniform magnetic field of energy density ρ B . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid do not approach isotropy through the evolution of the universe.  相似文献   

7.
The curvature-free (k=0) FRW expanding cosmological model is developed corresponding to interacting viscous fluids and zero-mass scalar fields. In the absence of non-static scalar fields the model exhibits the existence of the initial singularity (Q=0). However, with non-negative coefficient of shear viscosity, in the presence of non-static scalar fields we find thatQ has a minimum value (0). If this epoch is treated as the initial one, it may be said that the presence of scalar fields avoids the initial singularity. Other physical behaviour that the model exhibit has been discussed.  相似文献   

8.
It is well known that Kasner-type cosmologies provide a useful framework for analyzing the three-dimensional anisotropic expansion because of the simplification of the anisotropic dynamics. In this paper relativistic multi-fluid Kasner-type scenarios are studied. We first consider the general case of a superposition of two ideal cosmic fluids, as well as the particular cases of non-interacting and interacting ones, by introducing a phenomenological coupling function q(t). For two-fluid cosmological scenarios there exist only cosmological scaling solutions, while for three-fluid configurations there exist not only cosmological scaling ones, but also more general solutions. In the case of triply interacting cosmic fluids we can have energy transfer from two fluids to a third one, or energy transfer from one cosmic fluid to the other two. It is shown that by requiring the positivity of energy densities there always is a matter component which violates the dominant energy condition in this kind of anisotropic cosmological scenarios.  相似文献   

9.
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the early universe during the pre Big Bang Nucleosynthesis (BBN) era. When the expansion rate is enhanced with respect to the standard case, thermal relics typically decouple with larger relic abundances. In this paper, we study the dynamical evolution of an f(R) model of gravity in a homogeneous and anisotropic background which is given by a Bianchi type-I model of the universe filled with dark matter, which is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of modified gravity, we apply the formalism to a simple background solution of R+βR n gravity. Our analysis shows that f(R) cosmology allows dark matter masses lesser than 100 GeV, in the regime ρ c ?ρ m . We finally discuss how these limits apply to some specific realizations of standard cosmologies: an f(R) gravity model, Einstein frame model.  相似文献   

10.
We study how the constants G and Λ may vary in different theoretical models (general relativity with a perfect fluid, scalar cosmological models (“quintessence”) with and without interacting scalar and matter fields and a scalar-tensor model with a dynamical Λ) in order to explain some observational results. We apply the program outlined in section II to study three different geometries which generalize the FRW ones, which are Bianchi V, VII0 and IX, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we arrive at the conclusion that the solutions are isotropic and noninflationary while the cosmological constant behaves as a positive decreasing time function (in agreement with the current observations) and the gravitational constant behaves as a growing time function.  相似文献   

11.
The Bianchi type-V universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the universe has been used. It is modeled on the equation of state p=γ(ρ?ρ ? ) which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for power-law and exponential forms both. The case $\gamma =\frac{1}{3}$ has been also analysed.  相似文献   

12.
In this paper, we discuss cosmological application of holographic Dark Energy (HDE) in the framework of f(G) modified gravity. For this purpose, we construct f(G) model with the inclusion of HDE and a well-known power law form of the scale factor a(t). The reconstructed f(G) is found to satisfy a sufficient condition for a realistic modified gravity model. We find quintessence behavior of effective equation of state (EoS) parameter ω DE through energy conditions in this context. Moreover, we observe that the squared speed of sound $v_{s}^{2}$ remains negative, which indicates the instability of HDE f(G) model.  相似文献   

13.
We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on z). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians; the cases of power-law kinetic term and power-law potential are considered. Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ω m . To remove this degeneracy additional information is needed besides the data on large-scale geometry. The article is published in the original.  相似文献   

14.
We have studied anisotropic and homogeneous Locally Rotationally Symmetric (LRS) Bianchi type-I, Bianchi type-V, Bianchi type-III, Bianchi type-VI0, and Kantowaski–Sachs space-times with variable equation of state (EoS) parameter (w) in General Relativity. A special form of deceleration parameter (q) which gives an early deceleration and late time accelerating cosmological model has been utilized to solve the field equations. The geometrical and physical aspects of the models are also studied.  相似文献   

15.
In this work, I consider the logarithmic-corrected and the power-law corrected versions of the holographic dark energy (HDE) model in the non-flat FRW universe filled with a viscous Dark Energy (DE) interacting with Dark Matter (DM). I propose to replace the infra-red cut-off with the inverse of the Ricci scalar curvature R. I obtain the equation of state (EoS) parameter ω Λ , the deceleration parameter q and the evolution of energy density parameter $\varOmega_{D}'$ in the presence of interaction between DE and DM for both corrections. I study the correspondence of the logarithmic entropy corrected Ricci Dark Dnergy (LECRDE) and power-law entropy corrected Ricci Dark Energy (PLECRDE) models with the the Modified Chaplygin Gas (MCG) and some scalar fields including tachyon, K-essence, dilaton and quintessence. I also make comparisons with previous results.  相似文献   

16.
Using the method of canonical quantization in the static spacetime, we calculated the temperature Green function of the real scalar field of the de Sitter spacetime. We then used the generating functional of the Green function in the euclidean path integral representation to prove that the temperature Green function for T = (Λ3), Λ being positive cosmological constant, is identical with the Green function GE on the 4-dimensional euclidean sphere, thereby showing that the de Sitter-invariant vacuum state with respect to an inertial measuring system (geodesic observer) is the quantum mixed state with a Hawking temperature equal to T.  相似文献   

17.
In this paper, we have investigated Bianchi type VI h cosmological model filled with perfect fluid in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). We have obtained the cosmological models by solving the field equations. Some physical behaviors of the model are also studied.  相似文献   

18.
We consider a late closed universe of which scale factor is a power function of time using observational data from combined WMAP5+BAO+SN Ia dataset and WMAP5 dataset. The WMAP5 data give power-law exponent, α=1.01 agreeing with the previous study of H(z) data while combined data gives α=0.985. Considering a scalar field dark energy and dust fluid evolving in the power-law universe, we find field potential, field solution and equation of state parameters. Decaying from dark matter into dark energy is allowed in addition to the non-interaction case. Time scale characterizing domination of the kinematic expansion terms over the dust and curvature terms in the scalar field potential are found to be approximately 5.3 to 5.5 Gyr. The interaction affects in slightly lowering the height of scalar potential and slightly shifting potential curves rightwards to later time. Mass potential function of the interacting Lagrangian term is found to be exponentially decay function.  相似文献   

19.
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f (R,T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy–momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω(ρ ? ρ ?). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.  相似文献   

20.
In this paper, we study the domain wall with time dependent displacement vectors based on Lyra geometry in normal gauge i.e. displacement vector φ i * =[β(t),0,0,0]. The field theoretic energy momentum tensor is considered with zero pressure perpendicular to the wall. We find an exact solutions of Einstein’s equation for a scalar field φ with a potential V(φ) describing the gravitational field of a plane symmetric domain wall. We have seen that the hyper surfaces parallel to the wall (z=constant) are three dimensional de-sitter spaces. It is also shown that the gravitational field experienced by test particle is attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号