首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Long-term series of almost 14 years of altimetry data (1992–2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for  55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as − 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.  相似文献   

2.
The so-called Markowitz wobble (MW) is a quasi-harmonic variation of the mean pole of the Earth with a period of about 30 years and an amplitude of 0.02″–0.03″. In turn, the North Atlantic Oscillation (NAO), which is characterized by large-scale phenomena in the system of atmosphere-ocean processes in this region, shows variations of some meteorological parameters in a wide frequency range. Synchronous oscillations of the pole (MW) and the NAO indices are revealed in the present study. The possibility of geophysical excitation of MW oscillations by variations of pressure fields in the North Atlantic is investigated as well.  相似文献   

3.
The North Atlantic Oscillation (NAO) is the leading mode of atmospheric variability in the North Atlantic region, influencing storm tracks and creating a dipole pattern of precipitation from north to south across Western Europe. This distinct spatial distribution of precipitation provides a framework that can be potentially used to identify and reconstruct patterns of past NAO-forced climate variability. In this study we use tree-ring width series from Western Europe, in conjunction with principal components analysis and advanced spectral methods, to prospect for quasi-periodic climate signals that are forced by the NAO. We identify a robust 25-yr anti-phased synchronization in climate variability between Scandinavia and the Mediterranean during the 17th–20th centuries. The amplitude of the 25-yr beat displays a long-term modulation in northern and southern Europe, with minimum amplitude during the late Maunder Minimum. This amplitude minimum coincides with a maximum in Δ14C, suggesting a potential solar or oceanic influence on the intensity of the 25-yr band of quasi-periodic variability.  相似文献   

4.
This study describes surface cyclone activity associated with the interannual variability in summer precipitation in northern Eurasia and how that activity may be connected to other climate signals. An east–west seesaw oscillation of precipitation across Siberia is the primary mode of interannual variability in the summer hydrological cycle over northern Eurasia. This variation occurs at sub-decadal timescales of about 6–8 years. The spatial characteristics of cyclone frequency and cyclone tracks at the two poles in variability [eastern Siberia (ES)-wet–western Siberia (WS)-dry and WS-wet–ES-dry] were examined, and temporal variability in regional cyclone frequency was compared to basin-scale precipitation variability. The analysis period was from 1973 to 2002, when the precipitation variability signal was predominant.Cyclone behavior suggested that the regions of enhanced (reduced) cyclone activity coincided with regions of increased (decreased) precipitation in each phase of the oscillation. Such behavior reflects the zonal displacement of the track of frequent storm activity that accompanies the changes in precipitation. Comparisons of the temporal characteristics confirmed the importance of regional cyclone frequency on precipitation variability in both eastern and western Siberia. Low-frequency changes in regional cyclone activity may produce the precipitation oscillation. We used various climate signals to explore connections between regional precipitation and cyclone activity in Siberia. Results suggest that the North Atlantic Oscillation (NAO) from the preceding winter is significantly and negatively correlated with summer surface cyclone frequency and precipitation over western Siberia. Enhanced (reduced) summer cyclone activity and precipitation in western Siberia follows low- (high-) winter NAO. However, the physical mechanisms linking summer cyclone activity and precipitation over western Siberia with the preceding climate conditions associated with the winter NAO remain unclear.  相似文献   

5.
We extend the correlation analysis of solar signals and the North Atlantic Oscillation (NAO) back in time by using the aa index (since 1868) and the PC index (since 1948) as a proxy of the solar wind energy imparted to the magnetosphere. Prior to the 1940s the records of the NAO and the aa index were not closely connected, while after the 1940s their rhythms matched. We compare two distinctive periods with recent results on the long-scale reconstruction of solar activity. The shift in the NAO–aa interconnection can provide the explanation of a significant increase of solar activity after the 1940s. A strengthening of the interplanetary magnetic field leads to more intensive variations of the high-latitude ionospheric electric field that influences the atmospheric circulation.  相似文献   

6.
The high velocity of the apparent motion of near Earth asteroids (NEAs) is the main problem in their observation. This problem is solved at the Research Institute Nikolaev Astronomical Observatory (RI NAO) with a combined observation method using the time delay and integration mode of a CCD array and a camera rotator. A total of 1317 positions of 74 NEAs were obtained at RI NAO in 2008–2012. All the observations were made using the combined-observation method. The error in observations made at RI NAO is compared with the results that were obtained at other observatories in this work.  相似文献   

7.
This work concerns possible connection between variations of δ18O in Greenland ice, temperature, precipitation amount, NAO indices and relative sunspot numbers. The relationships between 10-year averaged values of this data were derived making use of regression analysis methods. It was discovered that February temperature yields the main contribution in variability of δ18O. The multiple correlation coefficient between weighted night temperature of the most important months and δ18O equals 0.95±0.01. Besides the local source of δ18O changes, defined by the amount of precipitation and temperature, an additional source correlated with the level of solar activity has been revealed. The relative contribution of this source in the δ18O variance is about 0.1. It has been shown that the multiple correlation coefficient between δ18O and NAO indices is equal to 0.85. Therefore the NAO yields more than 2/3 of the variances of climatic change in Greenland. An independent contribution of solar activity in climatic changes is about 1/3.  相似文献   

8.
Present-day stress field and tectonic inversion in the Pannonian basin   总被引:3,自引:1,他引:2  
This paper presents a latest compilation of data on the present-day stress pattern in the Pannonian basin, and its tectonic environment, the Alpine–Dinaric orogens. Extensional formation of the basin system commenced in the early Miocene, whereas its structural reactivation, in the form of gradual basin inversion, has been taking place since Pliocene to recent times. Reconstructed compression and associated horizontal contraction are mainly governed by the convergence between Adria and its buffer, the Alpine belt of orogens. The resulting contemporaneous stress field exhibits important lateral variation resulting in a complex pattern of ongoing tectonic activity. In the Friuli zone of the Southern Alps, where thrust faulting prevails, compression is orthogonal to the strike of the mountain belt. More to the southeast, intense contraction is combined with active strike–slip faulting constituting the dextral Dinaric transpressional corridor. Stresses are transferred far from Adria into the Pannonian basin, and the dominant style of deformation gradually changes from pure contraction through transpression to strike–slip faulting. The importance of late-stage inversion in the Pannonian basin is interpreted in a more general context of structural reactivation of back-arc basins where the sources of compression driving basin inversion are also identified and discussed. The state of recent stress and deformation in the Pannonian basin, particularly in its western and southern part, is governed by the complex interaction of plate boundary and intra-plate forces. The counterclockwise rotation and north-northeast-directed indentation of the Adriatic microplate appears to be of key importance as the dominant source of compression (“Adria-push”). Intra-plate stress sources, such as buoyancy forces associated with an elevated topography, and crustal as well as lithospheric inhomogeneities can also play essential, yet rather local role.  相似文献   

9.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

10.
11.
In this paper, applying Vondrák band filter to both series of (l.o.d.) and sunspot relative number (R), we obtain variations of amplitude of 11 yr term during 1800–1985. The results show that solar cyclic signal in (l.o.d.) series is weak and unstable. The amplitude of 11 yr term in R series has long-periodic variation. The paper has briefly discussed some results about effects of solar activity on the Earth's rotation through the atmospheric motion. From the variation of (l.o.d.) obtained by band filter, we find that maxima of amplitude of annual term in (l.o.d.) occur at the same time with those of sunspot number. It implies that the angular momentum imbalance between the circulations in Southern Hemisphere and Northern Hemisphere is controlled in some way by solar activity.  相似文献   

12.
Russian boreal forests have been reshaped by wildland fire for millennia. While fire is a natural component of boreal ecosystems, it impacts various aspects of the environment and affects human well-being. Often fires occur over large remote areas with limited access, which makes their ground-based observation difficult. A significant progress has been made in mapping burned area from satellite imagery, which provides consistent and fairly unbiased estimates of fire impact on areas of interest at multiple scales. Although the information provided by burned area products is highly important, the spatio-temporal dynamics of individual fire events and their impact are less known. In high northern latitudes of Northern Eurasia, MODIS (Moderate Resolution Imaging Spectroradiometer) makes up to four daily observations from each of the Terra and Aqua satellites providing consistent data on fire development with high temporal frequency. Here we introduce an approach to reconstruct the development of fire events based on active fire detections from MODIS. Fire Spread Reconstruction (FSR) provides a means for characterization of fire occurrence over large territories from remotely sensed data. Individual fire detections are clustered within a GIS environment based on a set of rules determining proximity between fire observations in space and time. FSR determines the number of fire events, their approximate size, duration, and fire spread rate and allows for the analysis of fire occurrence and spread as a function of vegetation, fire season, fire weather and other parameters. FSR clusters were compared to burned scars mapped from Landsat7/ETM+ imagery over Yakutia (Russia). While some smaller burn scars were found to be formed through a continuous burning of a single fire event, large burned areas in Siberia were created by a constellation of fire events incorporating over 100 individual fire clusters. Geographic regions were found to have a stronger influence on the rates of fire activity in the area compared to vegetation zones. In addition, fire spread rates do not directly correlate with the intensity of a given fire season. FSR is also used to identify the points of ignition for individual fire events in spatio-temporal domain for fire danger and fire threat modeling. This approach presents another step towards the more complete characterization of fire events from remotely sensed data.  相似文献   

13.
Several eclipsing binary systems have been selected for combined spectral and photometric observations using the Bulgarian NAO 2 m telescope and several smaller telescopes located at various places in the CESE region. Preliminary results, based on a pilot study started in 2001, about radial velocity and light curve variations of the active W UMa system LS Del are presented here.  相似文献   

14.
Recent studies have drawn attention to differences in the seasonal impact of the 8.2 ka event, with longer cooler summers and shorter cooler/drier winters. However, there are no data available on the simultaneity or the rate of onset of the seasonal changes in Europe. Based on the microfacies and geochemical analyses of seasonally laminated varved sediments from Holzmaar, we present evidence of differences in duration and onset time of changes in summer temperature and winter rainfall during the 8.2 ka event. Since both summer and winter climate signals are co-registered within a single varve, there can be no ambiguity about the phasing and duration of the signals. Our data show that the onset and withdrawal of the 8.2 ka summer cooling occurred within a year, and that summer rains were reduced or absent during the investigated period. The onset of cooler summers preceded the onset of winter dryness by ca. 28 years. In view of the differences in nature and duration of the impact of the 8.2 ka event we suggest that a clearer definition of the 8.2 ka event (summer cooling or winter cooling/dryness) needs to be developed. Based on regional comparison and available modelling studies we also discuss the roles of solar variability, changes in North Atlantic Thermohaline circulation, and North Atlantic Circulation (NAO) during the period under consideration. Wavelet analyses of seasonal laminae indicates that the longer NAO cycles, linked to changes in the N. Atlantic temperatures, were more frequent during the drier periods.  相似文献   

15.
Our high latitude ionospheric model predicts the existence of a pronounced “dayside” trough in plasma concentration equatorward of the auroral oval in both the Northern and Southern Hemispheres for solar maximum, winter, and low geomagnetic activity conditions. The trough in the Southern Hemisphere is much deeper than that in the Northern Hemisphere, with the minimum trough density at 800 km being 2 × 103 cm−3 in the Southern Hemisphere and 104 cm−3 in the Northern Hemisphere. The dayside trough has a strong longitudinal (diurnal) dependence and appears between 11:00 and 19:00 U.T. in the Southern Hemisphere and between 02:00 and 08:00 U.T. in the Northern Hemisphere. This dayside trough is a result of the auroral oval moving to larger solar zenith angles at those universal times when the magnetic pole is on the antisunward side of the geographic pole. As the auroral ionization source moves to higher geographic latitudes, it leaves a region of declining photoionization on the dayside. For low convection speeds, the ionosphere decays and a dayside trough forms. The trough is deeper in the Southern Hemisphere than in the Northern Hemisphere because of the greater offset between the geomagnetic and geographic poles. Satellite data taken in both the Northern and Southern Hemispheres confirm the gross features of the dayside trough, including its strong longitudinal dependence, its depth, and the asymmetry between the Northern and Southern Hemisphere troughs.  相似文献   

16.
This paper presents a synopsis of recently published studies by the co-authors, which show that several land surface characteristics unique to Northern Eurasia are responsible for facilitating a causal relationship between autumn snow anomalies in this region and subsequent hemispheric winter climate patterns. The large size and extratropical location of the contiguous Eurasian land mass results in broad, continental-scale interannual snow cover extent and depth variations throughout autumn and winter, and corresponding diabatic heating anomalies. These surface anomalies occur in the presence of a large region of stationary wave activity, produced in part by the orographic barriers that separate northern/central Eurasia from southern/eastern Eurasia. This co-location of snow-forced anomalies and ambient wave energy is unique to Northern Eurasia, and initiates a teleconnection pathway involving stationary wave–mean flow interaction throughout the troposphere and stratosphere, ultimately resulting in a modulation of the winter Arctic Oscillation (AO). Complementary new results are also presented which show that partial snow cover extent or snow depth only anomalies in Northern Eurasia are insufficient to initiate the teleconnection pathway and produce a winter AO signal. This synopsis provides a useful interpretation of the earlier studies in the specific context of Northern Eurasia regional climate and environmental change.  相似文献   

17.
简要介绍了近两年来美国和北欧Loran-C系统的研究和技术改造,以及未来数年内的发展方向政策,美国制订了的改造计划,对Loran-C系统及设备进行结构性调整和更新改造,同时对采用新技术后的Loran-C系统的性能和长期需求作出测试与评估,北欧Loran-C系统的研究重心是如何将陆基和空基系统有效地结合起来,Loran-C系统的作为和潜在应用还有于进一步的研究和探索。  相似文献   

18.
高精度全球定位系统(Global Positioning System,GPS)数据处理的成果精度往往受海潮模型、卫星轨道约束模式、星历产品等数据类型及处理策略的制约.在考虑上述影响因素的前提下进行相关实验,并基于误差理论提出一种增加基线解算次数组合平差的方法,以提高基线解算精度.实验结果表明,数据处理中置入海潮模型较...  相似文献   

19.
The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is an imaging survey being carried out in  Hα, r '  and   i '  filters, with the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) to a depth of   r '= 20  (10σ). The survey is aimed at revealing the large scale organization of the Milky Way and can be applied to identifying a range of stellar populations within it. Mapping emission line objects enables a particular focus on objects in the young and old stages of stellar evolution ranging from early T-Tauri stars to late planetary nebulae. In this paper we present the IPHAS Initial Data Release, primarily a photometric catalogue of about 200 million unique objects, coupled with associated image data covering about 1600 deg2 in three passbands. We note how access to the primary data products has been implemented through use of standard virtual observatory publishing interfaces. Simple traditional web access is provided to the main IPHAS photometric catalogue, in addition to a number of common catalogues (such as 2MASS) which are of immediate relevance. Access through the AstroGrid VO Desktop opens up the full range of analysis options, and allows full integration with the wider range of data and services available through the Virtual Observatory. The IDR represents the largest data set published primarily through VO interfaces to date, and so stands as an exemplar of the future of survey data mining. Examples of data access are given, including a cross-matching of IPHAS photometry with sources in the UKIDSS Galactic Plane Survey that validates the existing calibration of the best data.  相似文献   

20.
In this article we present the results of a study of the spatial distribution and asymmetry of solar active prominences (SAP) for the period 1996 through 2007 (solar cycle 23). For more meaningful statistical analysis we analyzed the distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR, DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The North – South (N – S) latitudinal distribution shows that the SAP events are most prolific in the 21° to 30° slice in the Northern and Southern Hemispheres; the East – West (E – W) longitudinal distribution study shows that the SAP events are most prolific (best observable) in the 81° to 90° slice in the Eastern and Western Hemispheres. It was found that the SAP activity during this cycle is low compared to previous solar cycles. The present study indicates that during the rising phase of the cycle the number of SAP events are roughly equal in the Northern and Southern Hemispheres. However, activity in the Southern Hemisphere has been dominant since 1999. Our statistical study shows that the N – S asymmetry is more significant then the E – W asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号