共查询到20条相似文献,搜索用时 15 毫秒
1.
由于无人机电力影像存在绝缘子器件尺度变化大,输电线路背景复杂,绝缘子缺陷目标小的特点,导致传统目标检测算法识别精度不高。该文提出以YOLOv5l为基础的CA、Transformer编码块和多尺度相融合的改进网络模型,较好的提高了大尺度变化影像上绝缘子缺陷检测的准确性,提升了复杂背景下多类型绝缘子缺陷识别的能力,并解决了微小绝缘子缺陷漏检的问题。基于在某电网公司的数据集上完成训练和验证实验,表明优化模型相比原YOLOv5l模型,准确率提升8.9%,召回率提升4.4%,平均精度均值提升3.5%,说明改进模型对绝缘子缺陷检测有效。 相似文献
2.
针对现有方法在道路场景中实施目标检测时存在对小目标检测精度低、泛化性能不佳等问题,提出一种基于YOLOv7的改进方法。在特征融合结构中,引入通道注意力机制来抑制更多负样本参与特征学习,同时在融合层末端输出四个尺寸的特征图,以强化对小尺寸目标的检测精度;使用改进K均值聚类(K-means++)算法生成与真实目标宽高更贴合的锚点框,让模型在训练前期快速收敛;最后在检测输出端使用软性非极大值抑制算法,精准检测重叠度较高的目标。以开源中国交通标志数据集(CCTSDB)与腾讯-清华100K(TT100K)数据集混合构建训练与测试数据集,实验结果表明,与原始YOLOv7相比,改进后模型在mAP@0.5、mAP@0.5:0.95指标上分别提升7.9%与5.6%,同时检测速度仅有少量下降,但仍能完成实时检测,同时在不同场景下保持性能稳定,充分证明了本文所提方法能够在复杂道路场景下开展多类目标的快速精准检测。 相似文献
3.
基于视觉的结构位移测量方法具有低成本、高精度、多点测量等优点,在实际工程中得到了广泛的应用。提出基于YOLOv5目标检测模型和视觉的封闭空间建筑物垂直位移测量方法,该方法利用YOLOv5目标检测模型识别和提取标志物兴趣区域,减少了后续标志物定位与跟踪的计算量。以基准点反算CCD相机架设的观测点位移量,并归算由相邻帧间标志物圆心像素变化转化的垂直位移值,实现观测点移动状态下封闭空间建筑物位移测量。实验结果表明,该方法得到的垂直位移测量的最大误差小于0.16 mm,能够满足工程结构垂直位移测量与监测的需要。 相似文献
4.
如何使传统神经网络算法对遥感影像典型目标检测表现出良好的适应性是当前遥感领域的一项难点.在深入解析最新YOLOv4网络结构及算法核心思想前提下,首先通过增加104×104的特征层尺度并嵌入SE模块进行网络结构改进;继而根据待检测目标尺度特点调整锚点框,提高YOLOv4算法对遥感影像典型目标检测性能;最后设计对照实验进行... 相似文献
5.
针对遥感影像场景复杂,飞机目标尺寸小、特征不明显的问题,提出一种基于改进YOLOv3的遥感影像飞机目标检测算法。首先对YOLOv3的特征提取网络的结构进行改进,并将网络的检测尺度由3个扩展至4个,提高小目标的检测率;其次采用线性加权的非极大值抑制算法,降低排列交错紧密的小目标的漏检率;最后在本文设计的数据集上将该算法与YOLOv3进行对比实验。结果表明,改进后的算法对复杂背景下的小尺寸飞机目标的检测准确率和召回率均有明显提升,验证了本文算法的有效性和鲁棒性。 相似文献
6.
针对传统火灾检测系统容易受地理空间的影响,且现有的深度学习方法对动态火灾的检测能力较弱等问题,该文提出了一种动态卷积YOLOv5视频火焰多尺度目标检测算法。采用K-means++算法优化了anchor box聚类,降低了分类结果的误差。基于动态卷积思想,采用剪枝方法对YOLOv5 Neck和Head的网络头进行了剪枝,降低了模型大小,实现了视频火灾的动态实时准确检测。基于不同火灾监控视频的实验结果表明,该文方法不仅可以有效地对地面监控视频中的火灾点进行检测,还能够对无人机上监控视频中的火灾点进行检测。研究结果可以应用于基于视频的不同场景的火灾检测,从而达到对现有火灾检测系统补充的作用。 相似文献
7.
提出一种用于遥感影像地面目标检测的轻量化检测模型,以ShuffleNetv2作为模型的特征提取骨干网络,在网络前三层引入基于风格重新校准通道注意力模块来提高模型对小尺寸样本的学习能力;使用多级特征图融合机制构建特征图金字塔,将浅层特征与深层充分融合,以进一步增强模型对不同尺寸目标特征的学习能力。基于RSOD Dataset创建训练和测试数据集,并在消融实验中验证了所使用改进策略对精度提高的实际效果,在模型对比试验中验证了本文模型在检测精度、速度以及模型体量方面的优越性。 相似文献
9.
10.
杨秀伶 《测绘与空间地理信息》2024,(4):73-76
提出一种能够部署于无人机终端的轻量级端到端车辆检测模型。在骨干网络中,首先,使用焦点机制对输入的原始图像进行无损下采样;然后,利用带有轻型注意力模块的深度可分离卷积核组成特征提取层;最后,在特征金字塔中通过跨尺度多层融合来提高三个层级输出特征图内的信息复杂程度。将开源无人机影像数据集VisDrone与多个时期采集的无人机道路影像混合,经过增强处理后作为训练集对模型进行训练。实验结果表明,本文所提出模型对于各类车辆目标均表现出稳定的检测性能,在综合检测精度方面明显优于几组对照模型,同时训练后模型体量较小,能够在测试环境的嵌入式硬件终端上部署并开展实时检测。 相似文献
11.
12.
13.
14.
针对现有路面裂缝自动化提取精度低和效率差的问题,该文提出一种结合条带池化改进U-Net网络的道路裂缝自动提取方法。该方法以U-Net网络为基础,将编码器与残差模块、空洞卷积相结合,增加网络深度扩大感受野,丰富裂缝提取信息、有效抑制噪声;使用注意力机制将编码与解码过程相连接,提升裂缝提取效率和准确率;以条带池化模块替换池化层,解决传统裂缝分割方法对条状特征提取精度差的问题。以CFD数据集为例,将该文方法与U-Net等其他4种提取方法进行对比分析。结果表明,结合条带池化改进U-Net网络的道路裂缝自动提取方法提取的裂缝完整,计算时间短,在指标F1上有明显提升。 相似文献
15.
从遥感影像上提取道路信息是当前遥感技术应用研究的主要方向之一.文中在详细分析航空遥感影像上道路特征及目前国内外关于道路提取技术的前提下,综合考虑各种实际情况,提出了一种新的基于特征的道路提取模型.在算法实现过程中,采用了自适应分块边缘检测、多尺度侦测道路中心点、自适应对比度调整、道路中心点综合判断准则等技术手段,保证了提取结果的稳健性、准确性.实验表明该算法能够快速、稳健地从航空遥感影像上提取道路中心骨架线. 相似文献
16.
17.
基于道路绿地特征的遥感影像道路信息提取方法研究 总被引:3,自引:0,他引:3
针对高空间分辨率卫星遥感图像上道路绿地的特点,提出一种基于道路绿地形状和空间分布特征识别道路边线和中心线的方法。在基于NDVI提取绿地信息的基础上,根据道路绿地的形状特征(细长),采用面积、主轴方向、紧致度、矩形度和长宽比等形状指数,区分道路绿地与其他绿地;根据道路绿地之间以及道路绿地和道路之间的空间关系特征,同时通过生成已知道路绿地区域的缓冲区,分隔那些与非道路绿地连成一片的道路绿地;最后,根据道路绿地的方向和距离特征提取出道路边线和中心线。 相似文献
18.
针对公路路面病害与背景像素对比度低导致检测困难的问题,本文提出了改进Mask R-CNN公路病害检测算法(FAC-Mask R-CNN)。首先在ResNet101基础上增加强位置信息浅层特征表达,并融合相邻特征图作为主干网络最终特征输出,同时引入CBAM模块,以减弱目标与背景像素间低对比度的影响;然后采用深度可分离卷积和空洞卷积分别代替主干网络及有效特征层输出过程应用的普通卷积,提升模型计算效率及掩码预测精度。FAC-Mask R-CNN在公路路面病害数据集(RDD)上平均精确率为89.86%,召回率为88.54%,调和均值为90%,相较于Mask R-CNN算法平均精确率提升3.09%。结果表明,FAC-Mask R-CNN能有效完成公路路面病害精细化检测与分割任务。 相似文献
19.
针对无人机遥感影像中多类别目标的检测问题,本文提出一种单阶段的深度学习新目标检测模型。在特征提取结构内,首先使用空洞卷积核来构建基本的提取结构,让模型在提取过程中获取感受野更大、原始信息保留更充分的特征图;针对小目标检测精度不佳问题,采用通道注意力与空间注意力组合的多路注意力机制来提高模型对真实目标的关注程度;在特征图连续上采样的基础上,将来自同层以及高层下采样的特征图进行融合来获取鲁棒性更强、语义信息更充分的特征图实施最终的检测。以VisDrone、DLR-MVDA数据集和路采影像组成数据集,并使用暗通道先验等方法对其进行强化,组成训练数据集对模型进行训练。实验结果表明,本文所提出的模型对于无人机遥感影像中的多种类别的目标均能够实现较好的检出,其平均精度均值较其余3种基准模型分别提高8.56%、4.58%及15.81%,检测速度可以达到25帧/s的水平,说明所提出模型能够针对遥感影像中的多类别目标实施快速精准的检测,同时具有较好的泛化能力。 相似文献
20.
实现精细化水务管控和洪涝灾害预警,需要实时、准确感知水位突变事件。现有技术不能满足夜晚、雾霾、雨天、雪天、漂浮物遮挡及阴影等复杂恶劣环境下的水位识别需求。为此,本文提出一种融合改进YOLOv5与卡尔曼滤波原理的无水尺水位智能检测技术:(1)引入YOLOv5对水位线(水岸分界线)进行检测,并利用线性拟合方法获得实际水位线;(2)针对水位线在延伸方向无限大而在其法向无限小特点,提出强化中尺度特征的多层级特征融合方法改进原YOLOv5算法;(3)利用卡尔曼滤波引入水位历史信息作为先验知识,提高本技术对复杂恶劣环境的泛化性能;(4)将图像中事先标定的固定的标志物加入到深度学习网络中训练,根据标志位真实尺寸解算实际水位高程,实现无水尺检测方案。相关试验和实践表明,改进的YOLOv5更加轻量化;本文所述水位智能检测技术斜率准确性为97.3%,较原算法提高了2.4%;截距准确性为99.3%,较原算法提高了0.5%;在夜晚、雾霾、雨天、雪天、漂浮物遮挡及阴影等复杂恶劣环境下可以自动、准确识别出水位高程,误差小于0.1 m。 相似文献