首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatic aspects of extreme European precipitation are studied. Daily pluviometric data from 280 stations across Europe, covering the period from 1958 to 2000, are used. First, the criteria for extreme precipitation cases and episodes are communicated using threshold and spatial definitions. The cases and episodes meeting these criteria are grouped according to their area of appearance. Most of them are located in three major areas: Greece, the Alps, and the Iberian Peninsula. The existence of trends in the annual and seasonal time series of these extreme events is examined. Decreasing trends are found in most of the cases, for Greece, the Iberian Peninsula, and Europe, as a whole. The Alps present a different behavior, with no trend at all in the southern part, and a possible increasing trend in the northern part. Finally, the positive impact of altitude in the frequency of occurrence of extreme precipitation episodes in Europe is discussed.  相似文献   

2.
江苏省近45a极端气候的变化特征   总被引:5,自引:8,他引:5  
利用江苏省35个测站1960—2004年45 a的逐日最高温度、最低温度、日降水量资料集,分析了近45 a江苏省极端高温、极端低温以及极端降水的基本变化特征。结果表明:(1)多年平均年极端高温的空间分布表现为西高东低,而极端低温则表现为自北向南的显著增加,极端降水的发生频次自南向北逐渐减少;(2)极端高温在江苏中部以及南部大部分地区有上升趋势,而西北地区则有弱的下降趋势;全省极端低温表现为显著的升高趋势;极端降水频次在南部地区有增加的趋势,北部减少趋势,中部则无变化趋势。(3)江苏极端高温、低温和极端降水的年际和年代际变化具有区域性差异,其中极端降水频次变化的区域性差异最为明显。  相似文献   

3.
Spatial patterns of daily precipitation indices and their temporal trends over Iran are investigated using the APHRODITE gridded daily precipitation dataset for the period 1961–2004. The performance and limitations of the gridded dataset are checked against observations at ten rain-gauge stations that are representative of different climates in Iran. Results suggest that the spatial patterns of the indices reflect the role of orography and sea neighborhoods in differentiating central-southern arid and semi-arid regions from northern and western mountainous humid areas. It is also found that western Iran is impacted by the most extreme daily precipitation events occurring in the country, though the number of rainy days has its maximum in the Caspian Sea region. The time series of precipitation indices is checked for long-term trends using the least squares method and Mann-Kendall test. The maximum daily precipitation per year shows upward trends in most of Iran, though being statistically significant only in western regions. In the same regions, upward trends are also observed in the number of wet days and in the accumulated precipitation and intensity during wet days. Conversely, the contribution of precipitation events below the 75th percentile to the annual total precipitation is decreasing with time, suggesting that extreme events are responsible for the upward trend observed in the total annual precipitation and in the other indices. This tendency towards more severe/extreme precipitation events, if confirmed by other datasets and further analyses with longer records, would require the implementation of adequate water resources management plans in western Iran aimed at mitigating the increasing risk of intense precipitation and associated flash floods and soil erosion.  相似文献   

4.
Summary ¶Temporal changes in the occurrence of extreme events in time series of observed precipitation are investigated. The analysis is based on a European gridded data set and a German station-based data set of recent monthly totals (1896/1899–1995/1998). Two approaches are used. First, values above certain defined thresholds are counted for the first and second halves of the observation period. In the second step time series components, such as trends, are removed to obtain a deeper insight into the causes of the observed changes. As an example, this technique is applied to the time series of the German station Eppenrod. It arises that most of the events concern extreme wet months whose frequency has significantly increased in winter. Whereas on the European scale the other seasons also show this increase, especially in autumn, in Germany an insignificant decrease in the summer and autumn seasons is found. Moreover it is demonstrated that the increase of extreme wet months is reflected in a systematic increase in the variance and the Weibull probability density function parameters, respectively.Received July 18, 2002; revised January 24, 2003; accepted February 1, 2003 Published online September 10, 2003  相似文献   

5.
We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land–atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972–2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28 ± 0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understood.  相似文献   

6.
1955-2005年中国极端气温的变化   总被引:27,自引:0,他引:27  
利用1955-2005年中国234站逐日最高、最低气温资料,通过计算趋势系数等,研究了中国年、季极端气温变化趋势的时空特征。结果表明:空间分布上,我国年和四季的极端低温均表现出稳定的增温趋势;年、春季和夏季极端高温在黄河下游地区出现了较明显的降温趋势,而在华南地区增温趋势较显著;时间演变上,无论年还是四季,极端低温的增温幅度明显大于极端高温的增幅;极端气温在四季均有增温趋势,尤其以冬季的升温最明显;年极端高温和低温的年代际变化基本一致。  相似文献   

7.
Europe has been warming over the past 30?years. In particular all seasonal temperature records have been broken since 2003, which altered socio-economic and environmental systems. Since we expect this trend in both mean and extreme temperatures to continue along the twenty first century under enhanced radiative forcing, it is crucial to understand the underlying mechanisms of such climate variations to help in considering adaptation or mitigation strategies to reduce the impacts of a warmer climate. From a statistical analysis we show that the inter-annual variability of European seasonal temperatures can be reconstructed from North-Atlantic atmospheric circulation only, but not their recent trends and extreme seasons. Adding North-Atlantic sea-surface temperature (SST) as a predictor helps improving the reconstruction, especially in autumn and winter. Sensitivity experiments with the MM5 regional model over 2003?C2007 suggest that the anomalous SST enhance European land temperatures through the upper-air advection of heat and water vapor, interacting with radiative fluxes over the continent. This mechanism is pronounced in autumn and winter, where estimates of SST influence as obtained from MM5 are in agreement with those obtained from statistical regressions. We find a lesser SST influence in spring and summer, where local surface and radiative feedbacks are the main amplifiers of recent extremes.  相似文献   

8.
利用1951—2009年南京日平均气温、日最高气温以及日最低气温等资料,分析了南京日最高气温和最低气温的长期演变趋势及其与平均温度的关系。结果表明:近60 a来,南京年平均气温、年平均最高气温、年平均最低气温均呈变暖趋势,20世纪90年代增温尤为明显;日最高气温,除夏季表现为降温趋势外,其他季节均为升温趋势;而四季平均气温和平均最低气温均为增温趋势;夏季气温日较差下降趋势明显,导致夏季昼夜温差减小;极端高温、低温的发生日数均呈下降趋势。极端气温与平均气温之间存在明显的相关性,且极端低温对平均气温影响更为明显。  相似文献   

9.
Record-breaking extreme temperatures have been measured in the last two decades all over Turkey, with recent studies detecting positive trends in extreme temperature time series. In this study, nonstationary extreme value analysis was performed on extreme temperature time series obtained from fifty stations scattered over the seven geographical regions of Turkey. Basic characterization of the data set was defined through outlier detection, homogeneity, trend detection, and stationarity tests. Trend-including non-stationary extreme temperature time series were analyzed with non-stationary Generalized Extreme Value distribution. Three main physical drivers were considered as the leading causes that trigger the observed trends in extreme temperatures over Turkey: time, teleconnection patterns of the Arctic Oscillations, and those of the North Atlantic Oscillations. The results showed that most of the absolute annual minimum and maximum temperature time series are inhomogeneous while the possible breakpoints date back to the1970s and 1990s, respectively. More than half of the absolute annual maximum time series (26/50 and many of the absolute annual minimum time series (21/50) showed a positive trend. No negative trend was detected in the extreme temperature time series. Based on the frequency analysis of the 21 annual maximum time series, the non-stationary estimations of 50-year return levels were detected to be higher than in the stationary model (between 0.44 °C and 3.73 °C). The return levels in 15 of the 20 minimum temperature time series increased from 0.11 °C up to 12.28 °C. Elevation increases the nonstationarity impact on absolute minimum temperatures and decreases it on absolute maximums. The findings in this study indicate that the consideration of non-stationarity in extreme temperature time series is a necessity during return level estimations over the study area.  相似文献   

10.
The impact of global warming on the warmest and coldest days of the annual cycle is explored according to an A2 scenario simulated by the CNRM-CM3 climate model in the framework of the IPCC AR4 intercomparison. Given the multi-model spread in IPCC projections, a validation strategy is proposed using the NCEP/NCAR reanalysis. Validation of the late twentieth century model climatology shows that warm and cold model events are slightly too long and infrequent. Although interannual trends in the warm (cold) day occurrence were positive (negative) only for six (three) of the nine considered sub-continental regions, simulated model trends are always positive (negative). This different behaviour suggests that simulated non-anthropogenic decadal variability is small relative to anthropogenic trends. Large-scale synoptic processes associated with European regional warm and cold peaks are also described and validated. Regional cold peaks are better reproduced than warm peaks, whose intensity accuracy is limited by other physical variables. Positive (negative) winter anomalies of sea and land surface temperature lead to summers with severe (weak) temperatures. These inter-annual anomalies are generated by a persistent pressure dipole over Europe. Regarding climate change, warm (cold) events will become more (less) frequent and longer (shorter). The number of warm days will largely rise and the number of cold days will dramatically decrease. The intensity of warm days will be particularly pronounced over Europe, given the projected summer drying in this region. However, according to the limited skill of the CNRM model, these results must be considered with caution.  相似文献   

11.
We analyzed trends, interdecadal variability, and the quantification of the changes in the frequency of daily rainfall for two thresholds: 0.1 mm and percentile 75th, using high quality daily series from 52 stations in the La Plata Basin (LPB). We observed increases in the annual frequencies in spatially coherent areas. This coherence was more marked in austral summer, autumn, and spring, during which the greatest increases occurred in southern Brazil, especially during extreme events. In winter, the low and middle basins of the Río Uruguay and Río Paraná showed negative trends, some of which were significant. Interdecadal variability is well defined in the region with more pronounced positive jumps west of the basin between 1950 and 2000. This variability was particularly more marked during periods of extreme rainfall in summer, autumn, and spring, unlike in winter when extreme daily rainfall in the lower Rio Paraná basin decreased by up to 60%. The changes in the past century during extreme rainfall produced modifications in the annual rainfall cycle. The annual cycle of both indices was broader during the last period which is mainly explained by the strong decreases in winter.  相似文献   

12.
In this study the behaviour of the North Atlantic Oscillation (NAO) and its impact on the surface air temperature in Europe 1891-1990 is analysed using statistical time series analysis techniques. For this purpose, both the NAO index (NAOI) and the surface air temperature time series from 41 European stations are split up into typical variation components. Various measures of correlation indicate that the NAOI-temperature relationships are approximately linear and most pronounced in winter. The spatial correlation patterns show a correlation decrease from North West to South East (winter) exceeding correlation coefficients of 0.6 in the Scotland-South Norwegian area. In summer, these correlations are very weak, in spring and autumn stronger but smaller than in winter. These correlations change significantly in time indicating increasing correlations in Central and North Europe and decreasing correlations in the North West. Low-frequent episodic components represented by related polynomials of different order are very outstanding in both NAO and temperatures showing up in all seasons, except summer, relative maxima roughly 1900 and in recent times, relative minima in the beginning ( ca . 1870) and roughly 1960-1970. Periodogramm analysis reveals a dominant cycle of 7.5 years (NAOI and a majority of temperature time series) whereas in case of the polynomial component one may speculate about a 80-90 year cycle.  相似文献   

13.
Abstract

The seasonal cycle of the GLAS/U of Maryland GCM is analysed in terms of the behaviour of the monthly and seasonal mean fields and the structure of the annual harmonic. (The stationary and transient eddies are treated in a companion paper.)

Both polar regions at upper levels are much too cold in the annual mean, leading to excessive zonal winds above 200 mb. The problem is present in all seasons, but is most severe in local winter. A compensating belt of warm temperatures at lower latitudes is found. It is argued that the inclusion of gravity wave drag is not necessarily the solution to this problem.

The simulated annual harmonics of Northern Hemisphere sea‐level pressure and 200‐mb heights are realistically intense over the eastern continents and weak over the eastern oceans. Problems in the simulation include the anomalously deep Aleutian low and the low values of the height over Europe, both occurring in winter.

The simulation of the annual harmonic in sea‐level pressure and 200‐mb heights in the Southern Hemisphere is realistic. The GCM fails to show the observed amplitude of the annual harmonic in 200‐mb temperature over Antarctica.

The GCM precipitation is too intense over land, particularly in summer. It is suggested that the problem is related to the parametrizations of moist convection and the boundary layer. The seasonal patterns of precipitation over the western tropical Pacific are generally realistic.

There is no evidence that the GCM systematically underestimates momentum flux convergence.  相似文献   

14.
The use of a relatively high resolution general circulation model (the Meteorological Office 5-layer model) to determine climate changes for impact studies is evaluated. The simulation of present day climate over Western Europe is assessed by comparing not only different seasons with climatological data, but also the mean annual cycle and the frequency of extreme events. It is found that while the broad features of the simulation are satisfactory, the model produces too many cold episodes in spring, and an excessive number of wet days over northern Europe. When atmospheric CO2 concentrations are quadrupled, and sea surface temperatures and sea ice extents changed appropriately, the number of cold episodes is reduced and precipitation is less frequent in summer and autumn over much of Europe, and throughout the year in the south. The relevance of both the model data and the statistical tests to climate impact studies is discussed.  相似文献   

15.
中国近50a极端降水事件变化特征的季节性差异   总被引:12,自引:2,他引:12  
利用中国419个测站1958-2007年逐日降水资料集,分析了近50a中国不同区域年和季节极端降水事件的基本变化特征。结果表明,多年平均极端降水事件的空间分布具有明显的纬向分布特征,并表现出显著的季节性差异。长江以南地区是春、冬季极端降水事件发生频次较高的区域;而年、夏季以及秋季极端降水事件发生频次在西南地区较高,在西北东部较低。年极端降水事件频次的长期变化趋势与夏季相似,华北和东北有增加趋势,其他地区为弱的减少趋势;其他季节的长期变化趋势存在明显的区域和季节性差异。年和季节极端降水事件的发生频次具有显著的年际和年代际变化特征。年极端降水事件时间序列的多项式拟合曲线的变化情况与夏季基本一致;而其他季节的变化则存在较大差异,表现出显著的季节性差异。  相似文献   

16.
This work presents a methodology to study the interannual variability associated with summertime months in which extremely hot temperatures are frequent. Daily time series of maximum and minimum temperature fields (T max and T min, respectively) are used to define indexes of extreme months based on the number of days crossing thresholds. An empirical orthogonal function (EOF) analysis is applied to the monthly indexes. EOF loadings give information about the geographical areas where the number of days per month with extreme temperatures has the largest variability. Correlations between the EOF principal components and the time series of other fields allow plotting maps highlighting the anomalies in the large scale circulation and in the SSTs that are associated with the occurrence of extreme events. The methodology is used to construct the “climatology” of the extremely hot summertime months over Europe. In terms of both interannual and intraseasonal variability, there are three regions in which the frequency of the extremely hot days per month homogeneously varies: north-west Europe, Euro-Mediterranean and Eurasia region. Although extremes over those regions occur during the whole summer (June to August), the anomalous climatic conditions associated with frequent heatwaves present some intraseasonal variability. Extreme climate events over the north-west Europe and Eurasia are typically related to the occurrence of blocking situations. The intraseasonal variability of those patterns is related to the amplitude of the blocking, the relative location of the action centre and the wavetrain of anomalies downstream or upstream of the blocking. During June and July, blocking situations which give extremely hot climate conditions over north-west Europe are also associated with cold conditions over the eastern Mediterranean sector. The Euro-Mediterranean region is a transition area in which extratropical and tropical systems compete, influencing the occurrence of climate events: blockings tend to be related to extremely hot months during June while baroclinic anomalies dominate the variability of the climate events in July and August. We highlight that our method could be easily applied to other regions of the world, to other fields as well as to model outputs to assess, e.g. the potential change of extreme climate events in a warmer climate.  相似文献   

17.
Future climate projections of extreme events can help forewarn society of high-impact events and allow the development of better adaptation strategies. In this study a non-stationary model for Generalized Extreme Value (GEV) distributions is used to analyze the trend in extreme temperatures in the context of a changing climate and compare it with the trend in average temperatures.

The analysis is performed using the climate projections of the Canadian Regional Climate Model (CRCM), under an IPCC SRES A2 greenhouse gas emissions scenario, over North America. Annual extremes in daily minimum and maximum temperatures are analyzed. Significant positive trends for the location parameter of the GEV distribution are found, indicating an expected increase in extreme temperature values. The scale parameter of the GEV distribution, on the other hand, reveals a decrease in the variability of temperature extremes in some continental regions. Trends in the annual minimum and maximum temperatures are compared with trends in average winter and summer temperatures, respectively. In some regions, extreme temperatures exhibit a significantly larger increase than the seasonal average temperatures.

The CRCM projections are compared with those of its driving model and framed in the context of the Coupled Model Intercomparison Project, phase 3 (CMIP3) Global Climate Model projections. This enables us to establish the CRCM position within the CMIP3 climate projection uncertainty range. The CRCM is validated against the HadEX2 dataset in order to assess the CRCM representation of temperature extremes in the present climate. The validation is also framed in the context of CMIP3 validation results. The CRCM cold extremes validate better and are closer to the driving model and CMIP3 projections than the hot extremes.  相似文献   


18.
根据1951-2010年珠江流域23个典型断面流量资料,用P-III型分布曲线拟合洪水系列进行频率计算,分析了珠江流域极端洪水事件的变化趋势。结果表明:1980年以来,珠江流域极端洪水事件发生的频次明显增加,尤其是自1990年以来增加趋势显著;1981-2010年较1951-1980年珠江流域约70%典型断面极端洪水事件呈增加趋势,主要分布在西江、北江、粤西;而近30%的典型断面呈减少趋势,主要分布在东江和桂南。  相似文献   

19.
Summary This paper presents an analysis and discussion of some rainfall characteristics of the European continent. Harmonic and Spectral Analysis are applied to monthly and annual precipitation data derived from 50 selected European meteorological stations. The Harmonic Analysis reveals that the sum of the first and second harmonic describes satisfactorily the mean annual precipitation regime, while the time of maximum of the first harmonic coincides with the time of the observed mean annual maximum of precipitation, almost everywhere. Spectral Analysis reveals the existence of QBO and ENSO signals in some different areas of Europe, while the eleven-year cycle of sunspots seem to have no effect on precipitation across the European continent. Climatic noise is also examined. The lowest values of climatic noise are found in the British Islands and in France, whilst relatively high values are found in the cyclogenetic region of the Gulf of Genoa. An increase in climatic noise has been identified over Mediterranean coastal areas during the summer. Authors’ address: A. F. Karagiannidis, A. A. Bloutsos, P. Maheras, Ch. Sachsamanoglou, Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, 540 06 Thessaloniki, Greece.  相似文献   

20.
Daily maximum and minimum temperatures from 29 low-lying and mountain stations of 7 countries in Central Europe were analyzed. The analysis of the annual variation of diurnal temperature range helps to distinguish unique climatic characteristics of high and low altitude stations. A comparison of the time series of extreme daily temperatures as well as mean temperature shows a good agreement between the low-lying stations and the mountain stations. Many of the pronounced warm and cold periods are present in all time series and are therefore representative for the whole region. A linear trend analysis of the station data for the period 1901–1990 (19 stations) and 1951–1990 (all 29 stations) shows spatial patterns of similar changes in maximum and minimum daily temperatures and diurnal temperature range. Mountain stations show only small changes of the diurnal temperature range over the 1901–1990 period, whereas the low-lying stations in the western part of the Alps show a significant decrease of diurnal temperature range, caused by strong increase of the minimum temperature. For the shorter period 1951–1990, the diurnal temperature range decreases at the western low-lying stations, mainly in spring, whereas it remains roughly constant at the mountain stations. The decrease of diurnal temperature range is stronger in the western part than in the eastern part of the Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号