首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

2.
The Chitradurga base metal sulfide deposit is associated with eugeosynclinal metabasalts (~ 2.5 b.y.) and banded pyritiferous cherts. The pre-tectonic character of the deposit and meta-volcanics is indicated by their deformational textures, structures and radioactive age data. The mineral assemblages of these ores are similar to the Zn-Cu type of massive sulfide deposits associated with Archean—Early Precambrian eugeosynclinal metavolcanics in other shield areas. The deposit has a rather high concentration of Co; microprobe data indicate that most of it is found as cobaltite and linnaeite and that it is inhomogenously distributed in these minerals. Very strong sympathetic correlation between Co and Cu, and the simultaneous increase of both of these elements with depth has been found. The geochemistry of the Chitradurga ores and metabasalts, especially their Zn:Cu:Pb and Pb:Zn ratios, suggests that the base metal sulfide content is probably genetically related to the basaltic flows. It appears that the Chitradurga deposit belongs to the ‘massive volcanogenic’ Cu-rich class of sulfide deposits. The metal content of the ores appears to have been supplied by rapidly degassing highly undifferentiated protomantle along with the basaltic magma.  相似文献   

3.
Exploration successes for volcanogenic massive sulfide (VMS) deposits, such as Kudz Ze Kayah, Wolverine and Fyre Lake in the Yukon–Tanana Terrane and Slide Mountain Terrane (southern Yukon Territory) have spurred interest in the correlative rocks in the Big Salmon Complex in northern British Columbia. In an effort to further the utility of multi-media stream geochemistry in exploration frontiers that are forested, heavily drift covered, or buried, the primary streams of 19 watersheds from the East Teslin Lake (National Topographic System (NTS): 104N/9, 16) and Teh Creek areas (NTS: 104O/11, 12, 13, 14) of the Big Salmon Complex were analyzed for Cu, Pb, and Zn and other parameters in the dissolved load, suspended load and bed load. Traditionally, exploration based on stream geochemistry has employed the bed load and more recently the dissolved load chemistry, but almost never the suspended load despite strong differences in the geochemical signatures of the three media. Here, we document that copper, lead, and zinc partition into the dissolved, suspended, and bed loads differently and that the magnitude of anomalies is different for each media. The adsorbing capacity of the suspended load may make it a more sensitive indicator of mineral deposits on a regional basis than either the trace-element-poor dissolved load or the bulk-rock-diluted bed load which are likely better indicators of local mineralization. It is clear that each phase contributes unique information about the distribution of elements in the watershed that could be considered in exploration models.We also show that summing standardized element concentrations and summing the sums across media appears to be an effective method to reduce the data without loss of important information. We likewise investigated the utility of calculating major element normalized enrichments for exploration and find that it is a promising approach.  相似文献   

4.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

5.
Kuroko-type massive sulfide deposits of the Eastern Black Sea province of Turkey are related to the Upper Cretaceous felsic lavas and pyroclastic rocks, and associated with clay and carbonate alteration zones in the footwall and hangingwall lithologies. A complete upward-vertical section of a typical orebody consists of a stringer-disseminated sulfide zone composed mainly of pyrite and chalcopyrite; a massive pyrite zone; a massive yellow ore consisting mainly of chalcopyrite and pyrite; a black ore made up mainly of galena and sphalerite with minor amounts of chalcopyrite, bornite, pyrite and various sulfosalts; and a barite zone. Most of the deposits in the province are associated with gypsum in the footwall or hangingwall. The paragenetic sequence in the massive ore is pyrite, sphalerite, chalcopyrite, bornite, galena and various sulfosalts, with some overlap between the mineral phases. Massive, stringer and disseminated sulfides from eight kuroko-type VMS deposits of the Eastern Black Sea province have a 34S range of 0–7 per mil, consistent with the 34S range of felsic igneous rocks. Sulfides in the massive ore at Madenköy (4.3–6.1 per mil) differ isotopically from sulfides in the stringer zone (6.3–7.2 per mil) suggesting a slightly increased input of H2S derived from marine sulfate with time. Barite and coarse-grained gypsum have a 34S range of 17.7–21.5 per mil, a few per mil higher than the 34S value of contemporaneous seawater sulfate. The deposits may, therefore, have formed in restricted basins in which bacterial reduction of sulfate was taking place. Fine-grained, disseminated gypsum at Kutlular and Tunca has 34S values (2.6–6.1 per mil) overlapping those of ore sulfides, indicating sulfide oxidation during waning stages of hydrothermal activity.  相似文献   

6.
7.
8.
9.
Volcanogenic massive sulfide (VMS) deposits of the Eastern Pontides, Turkey, are hosted by the Maastrichtian–Eocene dacite and rhyodacite series, accompanied by lesser andesite and basalts, as well as their pyroclastic equivalents, with tholeiitic to calc-alkaline affinity. The ore mineral assemblages are chalcopyrite, sphalerite, galena, chalcocite, covellite, bornite, and tetrahedrite. Potassic-, phyllitic- (sericitic), argillic- (kaolinitic and smectitic), silicic-, propylitic- and hematitic-alteration is commonly associated with these deposits.HFSE, LILE, TRTE and REE contents show strong variability in different alteration types resulting from interaction with acid or alkaline fluids. Sample groups showed chondrite-normalized enrichment of LREE relative to HREE and sub-parallel trends, except for the hematitic- and phyllitic-alteration types. MREE are strongly depleted in the zones of most intense silicification and kaolinization. Most sample groups have strongly- to slightly-negative Eu anomalies, ranging from 0.35 to 0.88 (mean); hematitic- (1.45) and propylitic-altered rocks (1.11) have slightly- to moderately-positive anomalies. The negative Eu anomalies indicate the low temperatures of fluids (< 200 °C). In contrast, the positive Eu anomalies result from high-temperature hydrothermal conditions (> 200 °C). No Ce anomaly was observed, except for phyllitic alteration where a slight positive anomaly was noted. The chondrite-normalized trace and REE patterns of the altered rocks are similar to each other, suggesting that they were derived from a common felsic source. The alteration groups formed from acid, intermediate, and alkaline hydrothermal solutions. Some transition, base and precious metals and volatile elements were clearly enriched, especially in the hematitic-, silicic-, kaolinitic- and phyllitic-altered samples. The other elements exhibit different behaviors in different sample groups. REE behavior is relatively immobile in the silicic-, hematitic-, kaolinitic- and partially in moderately- and propylitic-altered rocks, based on mass-balance calculations. LILE and HFSE appear mobile in the altered sample groups, except in the propylitic-altered rocks. TRTE behave as relatively immobile in most of samples, except in some of the silicic- and phyllitic-altered rocks, and especially in the hematitic-altered samples. HFSE, most of the transition (W, Mo, Cu, and Sb) and some other trace elements (Pb, As, Hg, Bi, Se and Tl), are enriched in the hematitic-altered samples and in the some silicic-altered samples. The highest As, Bi, Mo, Se and Hg concentrations in the hematite-altered samples can be used to distinguish other alteration types and may be a useful indicator in a prospect-scale base metal exploration.  相似文献   

10.
11.
Results of a numerical modeling study of quartz dissolution and precipitation in a sub-seafloor hydrothermal system have been used to predict where in the system quartz could be deposited and potentially trap fluid inclusions. The spatial distribution of zones of quartz dissolution and precipitation is complex, owing to the fact that quartz solubility depends on many inter-related factors, including temperature, fluid salinity and fluid immiscibility, and is further complicated by the fact that quartz exhibits both prograde and retrograde solubility behavior, depending on the fluid temperature and salinity. Using the PVTX properties of H2O-NaCl, the petrographic and microthermometric properties of fluid inclusions trapped at various locations within the hydrothermal system have been predicted. Vapor-rich inclusions are trapped as a result of the retrograde temperature-dependence of quartz solubility as the convecting fluid is heated in the vicinity of the magmatic heat source. Coexisting liquid-rich and vapor-rich inclusions are also trapped in this region when quartz precipitates as a result of fluid immiscibility that lowers the overall bulk quartz solubility in the system. Fluid inclusions trapped in the shallow subsurface near the seafloor vents and in the underlying stockwork are liquid-rich with homogenization temperatures of 200?C400°C and salinities close to that of seawater. Volcanogenic massive sulfide (VMS) deposits represent the uplifted and partially eroded remnants of fossil submarine hydrothermal systems, and the relationship between fluid-inclusion properties and location within the hydrothermal system described here can be used in exploration for VMS deposits to infer the direction towards potential massive sulfide ore.  相似文献   

12.
Tellurides have been identified in VMS mineralization at Yuinmery and Austin in the Archean Youanmi Terrane, Yilgarn Craton, Western Australia. Tellurides identified at Yuinmery include: petzite, stützite, hessite, tellurobismuthite, altaite, rucklidgeite, melonite, mattagamite and a nickel-cobalt telluride with chemical composition similar to cobaltian melonite which has previously only been reported once before. Tellurides and related minerals identified at Austin include: stützite, volynskite, tellurobismuthite, tetradymite, tsumoite, rucklidgeite, altaite and a mineral with the formula (Bi,Pb)3(Te,Se,S)4 corresponding to the rare mineral poubaite. The tellurides are interpreted to have been deposited with the base metals on and immediately below the sea floor by very hot fluids during a period of quiescence in the volcanism. The mineral assemblage suggests that the fluids in both areas had high ƒTe2 and were oxidising but close to the pyrrhotite-pyrite boundary. The presence of Ni and Co tellurides at Yuinmery but not at Austin is probably due to the derivation of the fluids at Yuinmery from mafic volcanism whereas at Austin the succession is dominantly felsic. The metamorphic grade at Austin is higher than that at Yuinmery and this may have resulted in some re-crystallization of tellurides and tellurosulfides.  相似文献   

13.
Mafic metavolcanic rocks in the area of the Zlaté Hory massive sulfide deposits are interpreted as convergent plate-margin basalts and basaltic andesites metamorphosed to the greenschist facies. According to the major- and trace-element compositions the metabasites exhibit island-arc tholeiitic to low-K, calc-alkaline composition.Approximately 50% of samples of maifc metavolcanics studied have a salient negative anomaly of Ce in chondrite-normalized REE patterns. The Ce-depleted greenschists are thought to represent hydrothermally altered equivalents of metabasites of island-arc tholeiitic composition. The alteration was accompanied by the sulfide mineralization. That is indicated by enrichment in Ba and S together with correlation of the Ce/Ce* values and CO2 abundances in the Ce-depleted rocks. The Ce anomaly may be caused by alteraton of ore-forming, seawaterderived solutions. The occurrence of Ce-depleted greenschists supports the hypothesis of the volcanogenic origin of the ore deposits in the Zlaté Hory area.  相似文献   

14.
Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.  相似文献   

15.
16.
17.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

18.
Massive sulfides recovered from the Kebrit Deep carbonaceous sedimentary succession represent black smoker fragments, novel to any Red Sea brine pool deposit. Chimneys, which were also observed in situ near the seawater/brine interface of the Kebrit Deep pool, are primarily comprised of Fe-, Zn- and Pb-bearing phases, and are often tar and asphalt impregnated. Cu-sulfides are virtually absent from parageneses, contrasting rift-related smoker and Red Sea metalliferous sediment deposits. Concentration of nickel in discrete bravoite points to a basalt/seawater leaching process as a source for most metals. The sedimentary package, which probably hosts Cu-mineralization in lower stockworks of the smoker deposit, is considered the major source of lead. Prevention of boiling of hydrothermal fluids, passing through a succession of organic-rich carbonate and clay horizons prior to discharge, is essential for smoker formation. Shaban Deep sedimentary-hosted massive sulfides are less frequent, with pyrite being the dominant ore mineral. Sulfur isotope data indicate both high temperature inorganic as well as biogenic sulfate (seawater and/or evaporite) reduction in sulfide-forming processes. Cogenetic sulfates formed from residual, bacteriogenically reduced seawater sulfate. Rather low sulfide/sulfate precipitation temperatures of 110–130 °C for the Kebrit brine pool and 100 °C for Shaban Deep massive sulfides are evident.  相似文献   

19.
于际民  蒋少涌 《地球化学》2001,30(2):140-146
对葡萄牙Neves Corvo Cu.Sn多金属矿床锡矿石,富铜硫化物矿石和贫铜硫化物矿石中锡石的微量元素电子探针分析结果的综合研究表明,该矿床存在高温(>300度),富W的早期锡矿化阶段,钞晚的贫W,富Cu,温度略低(245-295度)的Cu,Sn主矿化阶段,以旬晚的贫W,贫Cu温度更低(约200度)的Cu,Sn矿化阶段,结合Pb同位素研究可以推测矿床中Sn可能来源于矿体下部深处未出露的,与板块俯冲有关的富Sn古老地壳岩石,与其他类型锡矿床的微量元素对比表明,Neves Corvo矿床属于处于火山岩容矿(VHMS)型和沉积岩容矿(SHMS)型块状硫化物矿床之间的一种过渡类型--伊比利亚型。  相似文献   

20.
The Wilga and Currawong copper-zinc massive sulphide deposits in northeastern Victoria occur within a sequence of Silurian volcanics and sediments. The Wilga deposit which was discovered in mid 1978 consists of a single lens while the Currawong deposit, discovered in early 1979, consists of at least two lenses.The first indication of the presence of base metal mineralization in the area was provided by an assessment of stream sediment geochemical data contained in open-file Exploration Licence reports at the Victorian Department of Minerals and Energy.The massive sulphide mineralization does not outcrop, but the ore horizons are weakly mineralized and give rise to stringer gossans as far as 150 m up dip from ore grade mineralization. These can be identified by their trace element chemistry (anomalous values of Bi, Fe, As, Au, Pb, Hg, Se, Co, Ag and Mn) corresponding to the trace element signature of both stringer and massive sulphides.Soils in the area are essentially skeletal and residual with some colluvial movement on the steeper slopes. The soils are highly anomalous in Cu, Pb, and Zn over the projected horizon of the Wilga mineralization and the No. 2 lens at Currawong.The stream sediment responses at both Wilga and Currawong result from a combination of chemical and elastic dispersion. Downslope from the surface expression of the Wilga mineralization a spring discharges directly into the Tambo River. The spring has a very low pH and is rich in base metals resulting in enhanced metal values in both stream water and stream sediments.Analyses of selected samples of the more prominent vegetation species have failed to show a clear relationship to the mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号