首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified:the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initiated during the middle Pleistocene and guided by F4 that is a N-S trending fault on the slope and F1, a large NW-SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE-trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by F5, a N-S trending fault, diverted and blocked by the submarine terrace.  相似文献   

2.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60?m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

3.
The sea floor topography around Taiwan is characterized by the asymmetry of its shallow and flat shelves to the west and markedly deep troughs and basins to the south and east. Tectonics and sedimentation are major controls in forming the submarine physiographic features around Taiwan. Three Pliocene-Quaternary shelves are distributed north and west of Taiwan: East China Sea Shelf (passive margin shelf), the Taiwan Strait Shelf (foreland shelf), and Kaoping Shelf (island shelf) from north to south parallel to the strike of Taiwan orogen. Off northeastern Taiwan major morpho/tectonic features associated with plate subduction include E-W trending Ryukyu Trench, Yaeyama accretionary wedge, forearc basins, the Ryukyu Arcs, and the backarc basin of southern Okinawa Trough. Off eastern Taiwan lies the deep Huatung Basin on the Philippine Sea plate with a relatively flat floor, although several large submarine canyons are eroding and crossing the basin floor. Off southeastern Taiwan, the forearc region of the Luzon Arc has been deformed into five alternating N-S trending ridges and troughs during initial arc-continent collision. Among them, the submarine Hengchun Ridge is the seaward continuation of the Hengchun peninsula in southern Taiwan. Off southwestern Taiwan, the broad Kaoping Slope is the major submarine topographic feature with several noticeable submarine canyons. The Penghu Canyon separates this slope from the South China Sea Slope to the west and merges southwards into the Manila Trench in the northern South China Sea. Although most of sea floors of the Taiwan Strait are shallower than 60 m in water depth, there are three noticeable bathymetric lows and two highs in the Taiwan Strait. There exists a close relationship between hydrography and topography in the Taiwan Strait. The circulation of currents in the Taiwan Strait is strongly influenced by seasonal monsoon and semidiurnal tides. The Penghu Channel-Yunchang Ridge can be considered a modern tidal depositional system. The Taiwan Strait shelf has two phases of development. The early phase of the rift margin has developed during Paleoocene-Miocene and it has evolved to the foreland basin in Pliocene-Quaternary time. The present shelf morphology results mainly from combined effects of foreland subsidence and modern sedimentation overprinting that of the Late Pleistocene glaciation about 15,000 years ago.  相似文献   

4.
On the basis of bathymetric data and other geological and geophysical data obtained during the first survey conducted by Chinese Mainland in the area off eastern Taiwan Island from May to June in 2000, the morphological features of the region, the tectonic control to the seafloor topography and their tectonic implication are studied and discussed. The results have revealed that both the slope zone of the Ryukyu arc and the Ryukyu Trench present a typical morphotectonic characteristics controlled by the trench-arc system in the West Pacific Ocean. At the slope of eastern Taiwan Island the isobathic lines parallel to the coastline and distribute densely in nearly N-S direction and the slope gradient of topography is large. Such a unique feature is attributed to the collision of the Luzon arc and Eurasia continent. In the Huatung Basin, turbidity fans and submarine canyons are well developed, the formations of which are mainly related to the steep topography of the slope of the Luzon arc and the abundant s  相似文献   

5.
SeaMARC II side-scan images, bathymetry, and single-channel seismic reflection data along the southern Peru—northern Chile forearc area between 16° and 23° S reveal a complex region of morpho-structural, submarine drainage and depression patterns. In the subducting plate area, the NW—SE trending primary normal fault system represented by trench-paralleled scarps was incipiently formed as the Nazca Plate was bent in the outer edge and further intensified as the plate approached the trench. The NE—SW trending secondary normal fault system that consists of discontinuous and smaller faults, usually intersect the primary trench-paralleled fault system. Similar to the Nazca Plate, the overriding continental plate also shows two major NW—SE and NE—SW trending fault systems represented by fault scarps or narrow elongated depressions.The submarine drainage systems represented by a series of canyon and channel courses appear to be partly controlled by the faults and exhibit a pattern similar to the onshore drainage which flows into the central region of the coastal area. Two large depressions occurring along the middle—upper slope areas of the continental margin are recognized as collapse and slump that perhaps are a major result of increased slope gradient. The subsidence of the forearc area in the southern Peru—northern Chile Continental Margin is indicated by: a) drainage systems flowing into the central region, b) the slope collapse and slumps heading to the central region, c) the deepening of the trench and inclining of the lower slope terrace to the central region, and d) submerging of the upper-slope ridge and the Peru—Chile Coast Range off the Arica Bight area.The subsidence of the forearc area in the southern Perunorthern Chile margin is probably attributed to a subduction erosion which causes wearing away and removal of the rock and sedimentary masses of the overriding plate as the Nazca Plate subducts under the South American Plate.  相似文献   

6.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

7.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

8.
The Yithi submarine canyons,composed of four canyons less than 60 km in length,are located on the narrowest part of the East China Sea(ECS) slope.They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient(along the canyon axis) of 3°(<1 000 m) and 0.7°(>1000 m).The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough.Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope.The whole canyon system consists of three parts:the canyon,the channel and the fan.Slumps and slides often develop in the upper part of canyon where the water depth is less than 1000 m,and the turbidities usually developed on the fan.The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons.Canyon-fans are often associated with small angle progradational reflection.Most canyon-fans and levees were transversely cut by active normal faults with NEE-SWW trending that are coupled to the modern extension of the Okinawa Trough.According to the age of formation of canyon-fans and sediments incised by canyons,we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.  相似文献   

9.
为了解特殊地质体与天然气水合物成藏构造特征之间的关系,作者以冲绳海槽西侧陆坡和槽底为例,利用地震资料和地球化学方法对该地区上新世和第四纪沉积物厚度、有机碳含量和断裂系统进行了分析。研究表明,在冲绳海槽西侧及槽底都发育了较厚的上新统和第四系沉积层,上新统厚度约为1000—1500m,第四系厚约为1000—3500m,其中海槽南段存在巨厚的第四系,而且冲绳海槽西侧陆坡沉积物中有机质含量高达0.75%—1.25%,并且沉积速率高达10—40cm/ka,有利于有机质的保存和转化。陆坡发育有与海槽走向一致的NE-SW向断裂系统,以及横切海槽的一系列NW-SE向水平错动扭性断裂系统,其中NE-SW向断层在海槽南段方向变为NEE-SWW,这些断裂系统为烃类气(流)体的运移创造了有利条件。因此,在冲绳海槽西侧陆坡发育的海底峡谷、滑塌体、断块隆脊、泥底辟等特殊地质体与天然气水合物的形成密切相关。  相似文献   

10.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与"V"字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段"回春"和转向。  相似文献   

11.
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.  相似文献   

12.
Bathymetric charts of the continental slope of the northwestern Gulf of Mexico reveal the presence of over 90 intraslope basins with relief in excess of 150 m. The evolution and the general configuration of the basins are a function of halokinesis of allochthonous salt. Intraslope-interlobal and intraslope-superlobal basins occupy the upper and lower continental slope, respectively. Other structures on the slope associated with salt tectonics are the Sigsbee Escarpment, the seaward edge of the Sigsbee salt nappe, and the Alaminos and Keathley canyons. Major erosional features are the Mississippi Canyon and portions of a submarine canyon on the southern extreme of the Sigsbee Escarpment.  相似文献   

13.
Akhziv Canyon is one of a series of submarine canyons incised into the continental margin of the northern Levant. The Canyon is steep and sinuous, bounded by precipitous walls. Located off northern Israel, the Canyon was recently surveyed by a series of submarine video observations that show that both the thalweg and the walls are covered by ubiquitous apron of silty clay. Evidence for downslope sediment mass movement was encountered only in places. Earlier studies show that the silty clay is of Nilotic origin. Since the northern Levant margin has not been a part of the Nile sedimentary cell since the Pleistocene, the widespread Nilotic sediments indicate that the Quaternary sedimentary processes in the area differ considerably from the Neogene depositional regime.  相似文献   

14.
《Ocean Modelling》2002,4(3-4):221-248
Three-dimensional numerical simulations of the generation and propagation of the semidiurnal internal tide in a submarine canyon with dimensions similar to those of the Monterey Canyon are carried out using a primitive equation model. Forcing with just sea level at the offshore boundary in an initially horizontally homogeneous ocean with realistic vertical stratification, internal tides are generated at the canyon foot and rim, and along portions of the canyon floor. The results compare favorably with observations, both indicating enhancement of energy along the canyon floor propagating at an angle consistent with linear internal wave theory. Due to the earth's rotation, internal tide energy is distributed asymmetrically in the cross-canyon direction, favoring the southern side. The effect of canyon floor slope is explored, with the finding that small changes in the slope result in large changes in the amount and distribution of the internal tide energy. Canyons whose floors are subcritical with respect to the semidiurnal frequency along their entire length have very little baroclinic energy, whereas canyons that are near-critical along much of their length, such as the Monterey Canyon, develop strong internal tides that propagate shoreward. Canyons that are near-critical at their mouths but supercritical further inshore generate the most internal tidal energy overall, although little of it makes it onto the continental shelf shoreward of the canyon head. The effects of internal tides within the canyons can be seen outside the canyons as well. Water is transported from depth onto the adjacent continental shelf along the canyon rims. This tidal pumping can be responsible for alongshore internal tide propagation and tidal-period surface currents with relatively small horizontal scales of variability.  相似文献   

15.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwest South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time, smaller width and length, and single sediment supply. The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in Huaguang Canyon have been identified as regional caps. Therefore, Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea. Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

16.
High-resolution and high-density 2-D multichannel seismic data, combined with high-precision multibeam bathymetric map, are utilized to investigate the characteristics and distribution of submarine landslides in the middle of the northern continental slope, South China Sea. In the region, a series of 19 downslope-extending submarine canyons are developed. The canyons are kilometers apart, and separated by inter-canyon sedimentary ridges. Numerous submarine landslides, bounded by headscarps and basal glide surfaces, are identified on the seismic profiles by their distorted to chaotic reflections. Listric faults and rotational blocks in head areas and compressional folds and inverse faults at the toes of the landslides are possibly developed. Three types of submarine landslides, i.e., creeps, slumps, and landslide complexes, are recognized. These landslides are mostly distributed in the head areas and on the flanks of the canyons. As the most widespread landslides in the region, creeps are usually composed of multiple laterally-coalesced creep bodies, in which the boundaries of singular component creep bodies are difficult to delineate. In addition, a total of 77 landslides are defined, including 61 singular slumps and 16 landslide complexes that consist of two or more component landslides. Statistics show that most landslides are of a small dimension (0.53–18.09 km² in area) and a short runout distance (less than 3.5 km). Regional and local slope gradients and rheological behavior of the displaced materials might play important roles in the generation and distribution of the submarine landslides. A conceptual model for the co-evolution of the canyons and the associated landslides in the study area is presented. In the model it is assumed that the canyons are initiated from gullies created by landslides on steeper sites of the continental slope. The nascent canyons would then experience successive retrogressive landsliding events to extend upslope; at the same time canyon downcutting or incision would steepen the canyon walls to induce more landslides.  相似文献   

17.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

18.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwestern South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time,smaller width and length, and single sediment supply. The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in the Huaguang Canyon have been identified as regional caps. Therefore, the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea. The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

19.
随着盆地模拟和地质建模技术的不断进步,油气成藏研究逐渐向定量化、动态化和3D可视化方向发展。通过集成PetroMod多维度盆地模拟和Petrel数据处理的功能,搭建起多维度、动态化、可视化技术平台,建立了勘探阶段空间地质建模技术的流程及方法,包括构造建模、岩相建模、参数设置和模型校正。应用该技术,首次建立了琼东南盆地宝岛凹陷空间地质模型,重点实现了深水区南部断阶带油气成藏动态化和成藏3D可视化,恢复了4个关键时期的空间成藏动态过程,研究表明,南部断阶带早期成藏时空配置良好,成藏规模小,晚期成藏时空配置优越且纵向叠置,成藏规模大。南部断阶带成藏模式为煤系和浅海源岩供烃、断裂-砂体-构造脊阶梯型输导、大型海底扇储集、多层系复式聚集,主力聚集层系是陵三段和三亚一段,下一步勘探应积极寻找多期叠置成藏的大型储集体。  相似文献   

20.
A high-resolution seismic survey covering more than 2,000 km2 has revealed the processes responsible for the slope morphology and channel sedimentation across the forearc slope-basin of the Kurile Arc–NE Japan Arc collision zone, offshore from Tokachi (Hokkaido, Japan). The dominant slope contours parallel the trench but, in the middle and lower reaches of the southern slope, contours are convex-shaped with an offshore trend. This sector of the slope is traversed diagonally by the Hiroo submarine channel. The offshore-trending convex contours and the channel course have developed through the interplay of tectonic and sedimentary processes, including the development of anticlines, anticline-induced lobe sedimentation and channel avulsion. In its upper reaches, the channel is restricted by a topographic low associated with NNW–SSE-trending anticlines which developed within the upper and middle slope sectors during late Miocene uplift. The uplift timing and trend of these anticlines indicate that they resulted from collision, the channel sedimentology and slope morphology of the middle and lower slopes having been influenced by Pliocene uplift of NE–SW-trending anticlines. The trends of these anticlines parallel those of the Kurile Trench. The Pliocene and early Pleistocene strata of the middle and lower slopes consist of ponded lobe sediments deposited along the palaeo-Hiroo submarine channel on the landward side of the anticlines. As a lobe pile accumulated, the channel thalweg shifted to the north of the stack, allowing the channel to bypass the topographic high formed by the growing stack. Thick levee deposits built up along the channel course during the late Pleistocene and Holocene. These levees, along with the Pliocene and early Pleistocene lobes, are reflected in the present-day sigmoid-shaped, convex offshore-trending contours. Thus, the interplay of subduction- and collision-related anticlines, tectonic-related channel ponding, and avulsion has contributed to the slope morphology of the southern Kurile Trench.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号