首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Synthetic Aperture Radar (SAR) data from the European Remote Sensing Satellite (ERS-1) acquired in July, October and November, 1992 covering the kharif season of the region were used separately and in combination to identify the major crops and for estimation of their acreage before harvest Separability indices were calculated for major cover types and it was found that single-date SAR data cannot be used for accurate identification of various crops. Multi-temporal colour composite facilitated better identification of crop types. Comparison of area estimates made with ERS-1 SAR and IRS-1B LISS II data showed that the commonly used digital data analysis techniques (per pixel classifiers) are not adequate for accurate estimation of crop acreage using SAR data.  相似文献   

2.
The DEM of the Bhuj earthquake affected area of 50 x 50 km was generated using the ERS-1/2 SAR tandem data (May 15—16,1996). Region growing algorithm coupled with path following approach was used for phase unwrapping. Phase to height conversion was done using D-GPS control points. Geocoding was done using GAMMA software. A sample data of DEM of Shuttle Radar Topography Mission (SRTM) of the Bhuj area is made available by DLR Germany. The intensity image, DEM and Error map are well registered. The spatial resolution of this DEM is about 25 m with height accuracy of a few meters. The DEM derived through ERS SAR data is prone to atmospheric affects as the required two images are acquired in different timings where as SRTM acquired the two images simultaneously. An RMS height error of 12.06 m is observed with reference to SRTM though some of the individual locations differ by as much as 35 m.  相似文献   

3.
使用ERS-1/2干涉测量SAR数据生成DEM   总被引:12,自引:2,他引:12  
史世平 《测绘学报》2000,29(4):317-323
干涉合成孔径雷达(INSAR)数据已被证明能生产精确的数据高程模型(DEM),我们已开发了从单视SAR复影像数据自动生成数字高程模型的新软件,基于SAR多视强度影像的最小二乘曩像匹配被用于复影像对的配准,达到很高的配准精度(0.01~0.05像元精度)。一种新的计算目标点3维坐标(X,Y,Z)的方程还被提出,卫星轨道,姿态和基线参数以及相位常数被纳入在方程中并被表示了时间的线性函数,利用至少6个地面控制点能够同时估算这些参数,本文还给出了意大利埃特地区ERS-1/2SAR数据处理结果。  相似文献   

4.
Three-date ERS-1 SAR data acquired on August 24, September 28 and November 2, 1995, was used to classify rice crop in a predominant rice growing region of West Bengal. India, Artificial neural network, maximum likelihood, decision rute and K-Means clustering classifiers were used. Classification accuracy was evaluated from the error matrix of same set of training and validating pixels. Rice classification accuracy improved significantly using neural network classifier. The decision rule based classifier performed equally good for most of the sites, indicating the feasibility of deriving a common rule based algorithm for large area application. Law aecuracy was observed for maximum likelihood classifier.  相似文献   

5.
一种从ERS-1SAR海洋图像中检测船舶航迹的算法   总被引:7,自引:1,他引:7  
简单介绍了船舶航迹的几种模式,分析了单纯运用Tadon变换方法检测航迹的4个局限,并针对这些局限提出了一种检测航迹的思想--先进行斑点噪声的抑制,然后用生理视觉的静态轮廓系统对图像进行处理,最后应用Radon变换的方法来突出航迹的线性特征。我们用ERS-1 SAR海洋图像进行了测试,结果表明这一方法比单纯应用Radon变换的方法更为前效。  相似文献   

6.
In the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate the winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 at different growth stages from tillering to ripening in Varanasi district, India. The winter wheat crop parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry biomass (DB) and plant height (PH) were estimated using random forest regression (RFR), support vector regression (SVR), artificial neural network regression (ANNR) and linear regression (LR) algorithms. The Ground Range Detected products of Interferometric Wide (IW) Swath were used at VV polarization. The three different subplots of 1 m2 area were taken for the measurement of crop parameters at every growth stage. In total, 73 samples were taken as the training data-sets and 39 samples were taken as testing data-sets. The highest sensitivity (adj. R2?=?0.95579) of backscattering with VWC was found using RFR algorithm, whereas the lowest sensitivity (adj. R2?=?0.66201) was found for the PH using LR algorithm. Overall results indicate more accurate estimation of winter wheat parameters by the RFR algorithm followed by SVR, ANNR and LR algorithms.  相似文献   

7.
This study investigates the potential of multi-temporal signature analysis of satellite imagery to map rice area in South 24 Paraganas district of West Bengal. Two optical data (IRS ID LISS III) and three RADARSAT SAR data of different dates were acquired during 2001. Multi-temporal SAR backscatter signatures of different landcovers were incorporated into knowledge based decision rules and kharif landcover map was generated. Based on the spectral variation in signature, the optical data acquired during rabi (January) and summer (March) season were classified using supervised maximum likelihood classifier. A co-incidence matrix was generated using logical approach for a combined “rabi-summer” and “kharif-rabi-summer” landcover mapping. The major landcovers obtained in South 24 Paraganas using remote sensing data are rice, water, aquaculture ponds, homestead, mangrove, and urban area. The classification accuracy of rice area was 98.2% using SAR data. However, while generating combined “kharif-rabi-summer” landcovers, the classification accuracy of rice area was improved from 81.6% (optical data) to 96.6% (combined SAR-Optical). The primary aim of the study is to achieve better accuracy in classifying rice area using the synergy between the two kinds of remotely sensed data.  相似文献   

8.
This study developed an approach to map rice-cropping systems in An Giang and Dong Thap provinces, South Vietnam using multi-temporal Sentinel-1A (S1A) data. The data were processed through four steps: (1) data pre-processing, (2) constructing smooth time series VH backscatter data, (3) rice crop classification using random forests (RF) and support vector machines (SVM) and (4) accuracy assessment. The results indicated that the smooth VH backscatter profiles reflected the temporal characteristics of rice-cropping patterns in the study region. The comparisons between the classification results and the ground reference data indicated that the overall accuracy and Kappa coefficient achieved from RF were 86.1% and 0.72, respectively, which were slightly more accurate than SVM (overall accuracy of 83.4% and Kappa coefficient of 0.67). These results were reaffirmed by the government’s rice area statistics with the relative error in area (REA) values of 0.2 and 2.2% for RF and SVM, respectively.  相似文献   

9.
This paper introduces ENVISAT ASAR data application on rice field mapping in the Fuzhou area, using multi-temporal ASAR dual polarization data acquired in 2005. The procedure for ASAR data processing here includes data calibration, image registration, speckle reduction and conversion of data format from amplitude to dB for backscatter. The backscatter of rice increases with the rice growing stages, which was much different from other land covers. Based on image difference techniques, 6 schemes were designed with ASAR different temporal and polarization data for rice field mapping. Difference images between images in the early period of rice crop and growing or ripening period, are more suitable for rice extraction than those difference images between different polarizations in the same date. The most accurate result of late rice extraction was achieved based on the difference of HH polarization data acquired in October and August. Therefore, for rice field mapping, the temporal information is more important than polarization information. The data during the early growing season of rice is very important for high accuracy rice mapping.  相似文献   

10.
Subsequent to the launch of the state-of-art third generation Indian Remote Sensing satellite, Resourcesat-1, studies have been conducted to understand the capabilities of the on-board sensors for crop discrimination. The paper discusses the unique capabilities of the AWiFS, LISS-III and LISS-IV sensors in terms of their dimensionality, radiometry and spatial resolutions for crop discrimination and monitoring. The studies have indicated better crop discriminability especially using the short wave infrared data in 1.55–1.70 μm data among the spectrally confusing land cover classes, attributed to the relative differences of water contents. 10-bit radiometry of AWiFS data in four bands has been observed to be a better discriminant. Intrafield variability was very well captured by the LISS-IV data revealing the potential of data for applications like precision farming. The studies have revealed that potential of Resourcesat-1 data becoming the workhorse for several agricultural applications.  相似文献   

11.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.  相似文献   

12.
Radarsat ScanSAR Narrow (SN2) data acquired on July 24 and August 17, 1997 were used to analyse the signature of rice crop in West Bengal, India. The analysis showed that the lowland practice of cultivation gives a distinct signature to rice due to the initial water background. The relatively stable backscatter from water bodies in temporal data enhanced the separability of rice fields from water using two date data. Around 94 per cent classification accuracy was achieved for rice crop using two date data. It was feasible to discriminate rice sub-classes based on their planting period like early and late crop. The analysis indicates the suitability of ScanSAR data for large area rice crop monitoring as it has a wide swath of 300 km.  相似文献   

13.
利用ERS-1/2重轨干涉SAR数据提取DEM及其精度分析   总被引:7,自引:0,他引:7  
介绍了重轨干涉SAR数据的图像配准、干涉图生成、基线估计及DEM生成的原理,利用1996年获取的西茂玛尼地区的ERS-1/2串行干涉SAR数据提取了DEM。并选控制点计算了所获得的DEM的误差。最后对影响DEM精度的各种因素进行了分析。  相似文献   

14.
Estimation of crop area, growth and phenological information is very important for monitoring of agricultural crops. However, judicious combination of spatial and temporal data from different spectral regions is necessary to meet the requirement. This study highlights the use of active microwave QuikSCAT Ku-band scatterometer and Special Sensor Microwave/Imager (SSM/I) passive microwave radiometer data to derive information on important phenological phases of rice crop. The wetness index, a weekly composite product derived using brightness temperatures from 19, 37 and 85 GHz channels of SSM/I, was used to identify the puddling period. Ku-band scatterometer data provided the signal of transplanted rice seedlings since they acts as scatterers and increases the backscattering. Dual peak nature of temporal backscatter curve around the heading stage of rice crop was observed in Ku-band. The decrease of backscatter after first peak was associated with the threshold value of 60% crop canopy cover. The symmetric (Gaussian) and asymmetric (lognormal) curve fits were attempted to derive the date of initiation of the heading phase. The temporal signature from each of these sensors was found to complement each other in crop growth monitoring. Image showing pixel-wise timings of heading stage revealed the differences exists in various parts of the study area.  相似文献   

15.
In this study, temporal MODIS-Terra MOD13Q1 data have been used for identification of wheat crop uniquely, using the noise clustering (NC) soft classification approach. This research also optimises the selection of date combination and vegetation index for classification of wheat crop. First, a separability analysis is used to optimise the date combination for each case of number of dates and vegetation index. Then, these scenes have undergone for NC soft classification. The resolution parameter (δ) was optimised for the NC classifier and found to be a value of 1.6 × 104 for wheat crop identification. Classified outputs were analysed by receiver operating characteristics (ROC) analysis for sub-pixel detection. Highest area under the ROC curve was found for soil-adjusted vegetation index corresponding to the three different phenological stages data sets. From this study, the data sets corresponding to the Sowing, Flowering and Maturity phenological stages of wheat crop were found more suitable to identify it uniquely.  相似文献   

16.
A national level project on kharif rice identification and acreage estimation is being carried out successfully for several states in the country. A similar methodology based on the temporal profile for identification and delineation of various land cover classes has been followed for the Rabi rice acreage estimation. To define rabi rice, rabi season in India starts from November — February to March — June. Though the main growing season is predominantly winter but the uncertainty of getting cloud free data during the season has resulted in the use of microwave data. A feasibility study was taken up for early forecasting of the rabi rice area using microwave data. Hierarchical decision rule classification technique was used for the identification of the different land cover classes. Land preparation, puddling and transplantation were the reasons for the specific backscatter of rice growing areas. The increase or decrease in the SAR backscatter due to progress in the crop phenology or due to delayed sowing respectively forms the basis for identifying the rice areas. In addition the potential of optical data of a later date has been utilized in the form of various indices from bands including MIR to distinctly separate the late sown areas and also the puddled areas from other areas. This study emphasizes the synergistic use of SAR and optical data for delineating the rabi rice areas which is of immense use in giving an early forecast.  相似文献   

17.
ERS-1散射计数据用于全球陆地监测   总被引:6,自引:0,他引:6  
该文介绍了ERS-1(欧洲资源卫星1号)WSC(风散射计)数据结构。描述了全球雷达后向散射系数(σ°)图的成图方法。展示池中国第一幅全球雷达后向散射系数分布图。重点分析了WSC数据用于全球陆地监测的能力,并对全球典型地物地雷达后向散射系数进行了统计。研究结果表明:1.全球雷达后向散射系数侧重反映了全球值被图和地形图的叠合信息;2.WSC数据能够以区域和全球尺度分区分6类主要的地表覆盖类型。它们是:  相似文献   

18.
Accurate spatio-temporal classification of crops is of prime importance for in-season crop monitoring. Synthetic Aperture Radar (SAR) data provides diverse physical information about crop morphology. In the present work, we propose a day-wise and a time-series approach for crop classification using full-polarimetric SAR data. In this context, the 4 × 4 real Kennaugh matrix representation of a full-polarimetric SAR data is utilized, which can provide valuable information about various morphological and dielectric attributes of a scatterer. The elements of the Kennaugh matrix are used as the parameters for the classification of crop types using the random forest and the extreme gradient boosting classifiers.The time-series approach uses data patterns throughout the whole growth period, while the day-wise approach analyzes the PolSAR data from each acquisition into a single data stack for training and validation. The main advantage of this approach is the possibility of generating an intermediate crop map, whenever a SAR acquisition is available for any particular day. Besides, the day-wise approach has the least climatic influence as compared to the time series approach. However, as time-series data retains the crop growth signature in the entire growth cycle, the classification accuracy is usually higher than the day-wise data.Within the Joint Experiment for Crop Assessment and Monitoring (JECAM) initiative, in situ measurements collected over the Canadian and Indian test sites and C-band full-polarimetric RADARSAT-2 data are used for the training and validation of the classifiers. Besides, the sensitivity of the Kennaugh matrix elements to crop morphology is apparent in this study. The overall classification accuracies of 87.75% and 80.41% are achieved for the time-series data over the Indian and Canadian test sites, respectively. However, for the day-wise data, a ∼6% decrease in the overall accuracy is observed for both the classifiers.  相似文献   

19.
The quality of altimeter data and ocean tide model is critical to the recovery of coastal gravity anomalies. In this contribution, three retracking methods (threshold, improved threshold and Beta-5) are investigated with the aim of improving the altimeter data over a shallow water area. Comparison indicates that the improved threshold is the best retracking method over China Sea. Two ocean tide models, NAO99b and CSR4.0, are analyzed. Results show that different tide models used in the processing of altimeter data may result in differences more than 10 mGal in recovered coastal gravity anomalies. Also, NAO99b is more suitable than CSR4.0 over the shallow water area of China Sea. Finally, gravity anomalies over China Sea are calculated from retracked Geosat/GM and ERS-1/GM data by least squares collocation. Comparison with shipborne gravimetry data demonstrates that gravity anomalies from retracked data are significantly superior to those from non-retracked data. Our results have the same order as the other two altimeter-derived gravity models: Sandwell&Smith(V16) and DNSC08.  相似文献   

20.
In this study, an evaluation of fuzzy-based classifiers for specific crop identification using multi-spectral temporal data spanning over one growing season has been carried out. The temporal data sets have been georeferenced with 0.3 pixel rms error. Temporal information of cotton crop has been incorporated through the following five indices: simple ratio (SR), normalized difference vegetation index (NDVI), transformed normalized difference vegetation index (TNDVI), soil-adjusted vegetation index (SAVI) and triangular vegetation index (TVI), to study the effect of indices on classified output. For this purpose, a comparative study between two fuzzy-based soft classification approaches, possibilistic c-means (PCM) and noise classifier (NC), was undertaken. In this study, advanced wide field sensor (AWiFS) data for soft classification and linear imaging self scanner sensor (LISS III) data for soft testing purpose from Resourcesat-1 (IRS-P6) satellite were used. It has been observed that NC fuzzy classifier using TNDVI temporal index – dataset 2, which comprises four temporal images performs better than PCM classifier giving highest fuzzy overall accuracy of 96.03%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号