首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Panna National Park is situated in the north-central part of Madhya Pradesh, India. Landscape parameters like fragmentation, porosity, patchiness and jaxtaposition have been analysed for disturbance gradient characterization. Disturbance on biodiversity due to human activities has been studied both qualitatively and quantitatively. The species richness is highest in northern mixed dry deciduous forest followed by dry deciduous open scrub and southern tropical dry deciduous teak forest. Species richness of the open thorny dry deciduous forest with grasses is found to be the lowest. Disturbance analysis indicates that 22.02% of the southern slightly moist teak forests are highly disturbed whereas Anogeissus forest and Riverine forest have 17.04% and 12.41% of the area under high disturbance, respectively. A total of 88 field sample plots were laid to enumerate trees, shrubs, herbs, climbers, etc. Biological richness parameters such as Shannon-Wiener biodiversity index, biodiversity value, ecosystem uniqueness were derived from field data. High biological richness is found in northern mixed dry deciduous forest and mixed dry deciduous forest with bamboo. More than 99% of such areas are falling under medium to high biological richness. Nearly 55% of the gentle and flat to gentle, slope categories were found to have low biological richness. Phytosociological analysis of sampled field data indicated that the number of trees per unit area is the lowest in the Savannah. In inaccessible areas, the species richness and number of trees per unit area is very high. Main forces causing disturbance are search for diamonds, dams on river Ken, settlements in and around the park, grazing and resource utilization by villagers for fodder, animal grazing, fuel-wood, timber, etc.  相似文献   

2.
Remotely sensed data has unique advantage aver conventional data collection techniques in the study of geomorphology, as physiographical and geo-structural parameters are mostly discernible on the imagery. In the present study an attempt has been made to identify and evaluate the process of geomorphological evolution and hydrogeological conditions, temporal changes in pattern of geomorphic elements and overall impact on environment in alluvial fan region in Nainital District using multidate satellite data from Landsat (1975, 1986) and IRS (1993), through visual interpretation technique. The landuse changes are quite prominent in alluvial fan of upper and lower zone. As a consequence of deforestation, an area of 16 sq. km. of natural forest cover has been lost over a span of 18 years (1975–1993) leading to the increase in rate of erosion as well as environmental degradation in upstream areas. The study suggests that the ground water utilization in Tarai belt without replenishment of confined aquifers and installation of more tubewells in Bhabar belt may lead to total failure of flowing wells and subsequently disturb the balanced ecosystem.  相似文献   

3.
Remote sensing data pertaining to LANDSAT TM FCC of bands 2, 3 and 4 of 9th May 1991 and IRS-1A LISS II digital data of 3rd May 1991, have been utilized for the study of geomorphology of Bulandshahr district, U.P. Visual interpretation technique has been followed for geomorphological mapping and the area has been separated into four broadly defined geomorphic zones, namely Varahasi Older Alluvial Plain, Aligarh Older Alluvial Plain, Terrace Zone and Recent Flood Plains of Ganga and Yamuna, each characterized by its own geomorphic/landform elements discernable on remote sensing data. The Varanasi Older Alluvial Plain represents the oldest geomorphic surface occurring at highest tectonic level in the Gangetic plain. The Aligarh Older Alluvial Plain represents a palaeo-flood plain of a north flowing palaeo-drainage in the area. The Terrace zone represents the older flood plain of Ganga and its tributaries. The Recent Flood Plains of Ganga and Yamuna rivers, which get periodically inundated, constitute the youngest geomorphic surface in the study area. Digital image processing outputs, particularly ratio images have been found to be helpful in identifying certain geomorphic landforms (old/abandoned channels, scars etc.) due to greater contrast within ratio images.  相似文献   

4.
The area under study forms a part of the Indo-Gangetic Alluvial Plain, in Muzaffar Nagar District (Uttar Pradesh). To understand the relation of stratigraphy and geogenesis on one hand, and landscape and pedogensis on the other hand, the study was undertaken through a 40 km. long E-W. Cross-section of the area, with augering upto a depth of five metres or more, Aerial photographs (1:25,000) were used for delineating the major land forms and selection of cross-section and observations sites. Care was taken to cover all the main physiographic units occuring in the survey area. Four distinct depositional phases in Upper Alluvial Plain and two in Lower Alluvial Plain by Ganges, while first braided and then meandering have been recognized. Soil were classified according to Soil Taxonomy (1975), being Inceptisols and Alfisols in the Upper Alluvial Plain and Entisols in the Lower Alluvial Plain.  相似文献   

5.
6.
Remote sensing techniques using satellite images and aerial photographs are convenient tools in morphometric analysis of a drainage basin. In the present study morphometric parameters of Khairkuli drainage basin, district Dehradun, are worked out using aerial photographs. The parameters worked out include bifurcation ratio, stream length, form factor, circulatory ratio, elongation ratio, drainage density, constant of channel maintenance and stream frequency. Hypsometric relations of drainage basin are also presented. Relation between cumulative stream length and the stream order establishes that the ratio between cumulative stream length Σ 1 u Σ 1 nu Lu and the stream order u is constant throughout the. successive orders of a drainage basin suggesting that geometrical similarity is preserved in the basins of increasing order. The morphometric parameters computed suggest that the area is covered by resistant permeable rocks (with fracture and karstic porosities) and vegetative cover, the drainage network is affected by tectonic disturbances. The peak flows generated from the basin are likely to be moderately high and of short duration.  相似文献   

7.
Grasslands play an important role in a National Park environment. Its evaluation through remote sensing satellite data has been carried out in the present study. In context of Kanha National Park low grasslands are having significant importance to support increasing grassier her‐bivore population. Low grasslands occur both at hill tops and valley flat area. Field spectral measurements have been carried out in both the low grassland sites to estimate biomass (above ground). The present study reveals that there exist strong correlation between dry weight of green biomass and vegetation index (IR/R) at both the sites.  相似文献   

8.
Aerial photo-interpretation of the area underlain by Bandelkhand gneisses, Bijawars and Vindhyans, around Madaura and Sonrai in Lalitpur Dist. of U.P., revealed the presence of a number of lineaments. During fieldwork the lineaments were found to represent ultrabasic, basic and acidic intrusions, faultzones, lithological contacts and foliation. The drainage of the area was found to be grossly controlled by these elements. Three major trends viz. NW-SE, NE-SW and E-W are observed in the area. The first two represent shear joint system, while the latter represent release fractures. This setup is visualised to be due to N-S phase of compression.  相似文献   

9.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

10.
A part of Precambrian rocks of central India around Renukoot, district Sonbhadra, U.P., exhibits noteworthy differences in morphometric characteristics such as drainage density, mean stream length, bifurcation ratio and stream frequency across Son Narmada South Fault of the Son Narmada Lineament Zone. The Remote Sensing and GIS based present study explains the tectonic evolution of the terrain by dividing the area into two morphotectonic units namely Dudhi Morphotectonic Unit (DMU) and Mahakoshal Morphotectonic Unit (MMU) with the help of a proposed model. The study reveals that the landform features of the rocks of DMU and MMU of the study area are strongly controlled by underlying lithology and structures. The study also reveals different tectonic histories for the units until the last or the fourth phase of deformation dominated by shearing movement.  相似文献   

11.
A World Bank-aided project on sodic land reclamation in Uttar Pradesh is being executed by U.P. Bhumi Sudhar Nigam, Lucknow, and Remote Sensing Applications Centre, U.P., Lucknow has the responsibility of sodic land mapping for the execution of land reclamation programme at the cadastral level. Sodic lands are mainly concentrated in the Gangetic alluvial plains but the problem of sodicity is particularly acute in the canal-irrigated areas. A study of the distribution pattern of sodic lands in canal and noncanal command areas in a reclamation site (covering 60 villages out of which sodic lands were mapped in 51 villages) of Etah district in Uttar Pradesh, indicates that 18.39 per cent area of the canal command villages was barren sodic which was 13.41 per cent of the total geographical area of the site (15417 ha), however, 11.69 per cent area was recorded to be barren sodic in the non-canal command villages which was only 3.16 per cent of the geographical area of the site. The results of soil chemical analysis indicate that barren sodic lands of canal command area are saline-sodic with higher concentration of soluble salts (pH2 >8.5, EC2 >4 dSm−1), however, those of non-canal command area are sodic (pH2 >8.5, EC2 <4 dSm−1). The post-monsoon ground level in the canal-irrigated areas was in the critical and semicritical zone (< 3.0 mbgl) whereas it was well below the semi-critical zone in the non-canal command area, which indicates that the high ground water level is a major factor to higher the area under sodicity.  相似文献   

12.
13.
The study area around Choral river basin in the Narmada valley region, forms a part of Indore and Khargone districts of Madhya Pradesh. The geological, geomorphologic, lineament, hydrogeomorphic and groundwater potential zone maps of the study area have been prepared using IRS IC LISS III FCC imagery on 1:50,000 scale. Various litho-units, different land-forms, lineament fabric and hydro-geomorphic units have been worked out by visual interpretation methods and frequent field checks. The integrated hydro-geomorphological map of the study area reveals that the groundwater potential in denudation landforms such as buried pediplains, plateaus, denudational and residual hills is moderate-to-poor. On the other hand, the groundwater occurrence in structural landforms like structural hills, lineaments/faults and narrow gorges is likely to be good to moderate and the depositional landforms namely alluvial plains, valley-fills and meandering-channels favour the accumulation of sub-surface water and, therefore, may be considered as good recharge zones. From the point of view of groundwater occurrence, various hydro-geomorphic units have been classified as high, moderate and low potential zones.  相似文献   

14.
The conventional visual interpretation of landsat Imagery is potentially the most useful remote sensing tool for the study of channel migration & water logging conditions at different time spans; which were earlier not easy due to non availability of suitable evidences. The present study brings out, in exact terms & the extent of the utility of the false colour and black and white landsat data. The application of the false colour scanning method is also useful remote sensing tool for the study of direct & indirect hydrogeological regime by visual interpretation technique. The spectrum are favourable for detection of surface phenomenon, which is associated with the subsurface ground water environment. An area of about 3,500 Sq.Km. of U.P. along left bank of Ghaghra river and right bank of Terhi rivers have been taken for the study. The paper was designed to evaluate the fluvial action and ground water environments with the help of repetitive landsat data in ten years. The fluvial action of Ghaghra and Terhi rivers have been mainly contributing to the development of hydrogeomorphological units which have given exact references regarding fluctuation in hydrogeomorphological units and water logging with hydrological response of the ground water environment, by using landsat data of 1975 & 1984. Further the direct relationship between remote sensing measurement and physical properties of hydrogeological environments is brought out in the maps.  相似文献   

15.
Focusing on the central Kalahari, this study utilized fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS), derived in situ and estimated from GeoEye-1 imagery using Multiple Endmember Spectral Mixture Analysis (MESMA) and object-based image analysis (OBIA) to determine superior method for fractional cover estimation and the impact of vegetation morphology on the estimation accuracy. MESMA mapped fractional cover by testing endmember models of varying complexity. Based on OBIA, image was segmented at five segmentation scales followed by classification. MESMA provided more accurate fractional cover estimates than OBIA. The increasing segmentation scale in OBIA resulted in a consistent increase in error. Different vegetation morphology types showed varied responses to the changing segmentation scale, reflecting their unique ecology and physiognomy. While areas under woody cover produced lower error even at coarse segmentation scales, those with herbaceous cover provided low error only at the fine segmentation scale.  相似文献   

16.
17.
The present study is based on digital analysis of IRS 1C/1D LISS-III and IRS P6 LISS-IV images for identification of lineaments in Meja Thermal Power Plant site in Allahabad district. In spite of all limitations due to anthropogenic activities of stone quarrying and criss cross unmetalled roads, almost non-existent vegetation indicators and soil moisture, the efforts were made to identify and map a number of lineaments in the study area and these were subsequently verified in the field. Most of the lineaments identified and mapped are not having any major displacement along them or are not displacing or truncating any major rock unit. Field investigations have revealed that there is no drastic change in the trend of rocks along the lineaments mapped in the study area. On the basis of digital analysis of IRS P6 LISS-IV data NE–SW and NW–SE trending lineaments have been identified and mapped. Some NNE–SSW trending lineaments have also been mapped. All the lineaments demarcated in this area still need to be correlated with the seismic data of the area by superimposing the microseismicity data over lineaments.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号