首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reconstruction of the line-of-sight component and modulus of the surface-magnetic-field vector is proposed, using a model with artificial point sources of the magnetic field with “virtual” magnetic charges in the body of a star. This approach for the direct calculation of the field from the superposition of the potentials of individual magnetic charges enables the reconstruction of most possible configurations of the surface magnetic field of a star. Proper choice of the axis orientations for the three coordinate systems used makes it possible to obtain a simple representation for the vector components of the surface magnetic field. In a dipole approximation, the expression for the line-of-sight component of the magnetic field averaged over the visible disk of the star reduces to the form obtained in other studies.  相似文献   

2.
We determine the abundances of Pr and Nd in the atmospheres of magnetic and non-magnetic chemically peculiar stars from the lines of rare earth elements in the first and second ionization states. The computations for the magnetic stars take into account the influence of the magnetic field on line formation. We studied the influence of errors in the stellar-atmosphere parameters and the atomic parameters of the spectral lines on the accuracy of abundance determinations. Within the derived accuracy, ionization equilibrium is satisfied in the atmospheres of non-pulsating magnetic and non-magnetic stars (so that abundances derived separately from lines of first and second ions agree). For all the pulsating magnetic (roAp) stars studied, the abundances derived from lines of second ions are 1.0 to 1.7 dex higher than those derived from first ions. The violation of ionization equilibrium in the atmospheres of pulsating stars is probably due to, first, considerable enrichment of Pr and Nd in the uppermost atmospheric layers, and second, a higher location for the layer of enhanced elemental abundance in roAp stars than in non-pulsating stars. Two objects from the list of non-pulsating magnetic stars, HD 62140 and HD 115708, exhibit anomalies of their Pr and Nd lines characteristic of roAp stars. The differences in the rare earth anomalies for the pulsating and non-pulsating peculiar stars can be used as a selection criterion for candidate roAp stars.  相似文献   

3.
Variations in the positions of the intersection points of tangents to ray structures in the polar corona of the Sun during the solar cycle are considered. At first glance, the decrease in the distance q between the tangent intersection point and the center of the solar disk during activity maximum contradicts harmonic analyses that indicate that the relative weight of higher harmonics in the global field increases during this period. Indeed, the higher the harmonic number in an axisymmetric field, the closer the intersection point of the field-line tangents (the magnetic focus) to the solar surface. It is shown that q for a field composed of two harmonics with opposite polarities at the poles can be smaller than q for either of them taken alone. A simple model representing the global field using the third and seventh harmonics is analyzed; this model can reproduce quite satisfactorily the observed dynamics of magnetic foci of the polar field.  相似文献   

4.
We have calculated the factor (ν g ? ν e )/ν g in the temperature range T = 300–20 000 K for the ions Be+, Mg+, Ca+, C+ in atomic hydrogen and for the ions Mg+ in atomic argon using the known interaction potentials. Here ν e and ν g are the transport collision frequencies for excited- and ground-state particles respectively. Calculations have shown that at T = 10 000–20 000 K, typical temperatures of the atmospheres of chemically peculiar (CP) stars, the values |ν g ? ν e |/ν g ≈ 0.1–0.2 can be reached for ions. This causes the light-induced drift (LID) velocity of ions up to ~0.1 cm/s in the atmospheres of CP stars with temperatures T < 10 000 K. Therefore the separation of chemical elements due to the LID of ions under the conditions of the atmospheres of such CP stars can be an order of magnitude more efficient in comparison with the separation caused by the radiation pressure. In the atmosphere of more hot stars (20 000 K > T > 10 000 K) it is possible to expect approximately identical magnitude of the LID effect and that of radiation pressure. In the very hot stars (T >20 000 K) the LID effect is manifested very weakly.  相似文献   

5.
The magnetic-field structure in regions of stationary, planar accretion disks around active galactic nuclei where general-relativistic effects can be neglected (from 10 to 200 gravitational radii) is considered. It is assumed that the magnetic field in the outer edges of the disk, which forms in the magnetosphere of the central black hole during the creation of the relativisitic jets, corresponds to the field of a magnetic dipole perpendicular to the plane of the disk. In this case, the azimuthal field component Bφ in the disk arises due to the presence of the radial field Bρ and the azimuthal velocity component Uφ. The value of the magnetic field at the inner radius of the disk is taken to correspond to the solution of the induction equation in a diffusion approximation. Numerical solutions of the induction equation are given for a number of cases.  相似文献   

6.
The nature of stellar complexes with peculiar populations and morphologies is investigated. The existence in the LMC of complexes made up of isolated stars, on the one hand, and consisting exclusively of clusters, on the other hand, could be due to different turbulence patterns in the initial gaseous medium. Arc-shaped stellar complexes are unlikely to be the result of star formation in a gaseous shell swept up by a central source of pressure, and instead probably reflect the shape of a bow shock that develops when a sufficiently dense cloud is subject to dynamical pressure. A peculiar arc-shaped complex in NGC 6946, which contains a young, massive cluster, may be the result of an oblique infall of a high-velocity cloud onto a region of the gaseous disk of the Galaxy with a strong, regular magnetic field; the properties of this complex can be explained as the result of a collision of the resulting shocks. The arc-shaped complexes in the LMC were also probably produced by high-velocity clouds moving obliquely through the more tenuous gas of the LMC disk. A similar complex in NGC 300 may owe its origin to the effect produced on a dense cloud by the shock from an extremely powerful external explosion, whose stellar remnant may have survived as an X-ray source now located along the line of symmetry of the arc of the complex. The rareness of such structures can be explained by the narrow range of conditions under which they can develop.  相似文献   

7.
8.
We list and analyze the main currently known mechanisms for accelerating the space motions of stars. A high space velocity of a star can be a consequence of its formation in the early stages of the evolution of a massive galaxy, when it was spheroidal and non-stationary, so that stars were born with velocities close to the escape velocity for the galaxy. Another possibility is that the star arrived from another galaxy with a velocity that is high for our Galaxy. The decay of unstable close multiple stars or supernova explosions in close binaries can also provide velocities of up to several hundreds of km/s to main-sequence stars and velocities of up to ∼1000 km/s to degenerate stars, neutron stars, and stellar-mass black holes. The merger of components of a binary system containing two neutron stars or a neutron star and a black hole due to gravitational-wave radiation can accelerate the nascent black hole to a velocity∼1000 km/s. Hypervelocity relativistic stars can be born due to asymmetric neutrino ejection during a supernova explosion. Stars can be efficiently accelerated by single and binary supermassive black holes (with masses from several millions to several billions of solar masses) in the nuclei of galaxies. Thanks to their gravitational field and fast orbital motion (in the case of binary objects), supermassive black holes are able to accelerate even main-sequence stars to relativistic velocities.  相似文献   

9.
The coronal and chromospheric emission of several hundred late-type stars whose activity was recently detected are analyzed. This confirms the previous conclusion for stars of HK project that there exist three groups of objects: active red M dwarfs, G-K stars with cyclic activity, and stars exhibiting high but irregular activity. The X-ray fluxes, EUV-spectra, and X-ray cycles can be used to study the main property of stellar coronas—the gradual increase in the number of high-temperature (T ≥ 10 MK) regions in the transition from the Sun to cyclically active K dwarfs and more rapidly rotating F and G stars with irregular activity. The level of X-ray emission is closely related to the spottedness of the stellar surface. The correlation between the chromospheric and coronal emission is weak when the cycles are well-defined, but becomes strong when the activity is less regular. Unexpectedly, stars whose chromospheric activity is even lower than that of the Sun are fairly numerous. Common and particular features of solar activity among the activity of other cyclically active stars are discussed. Our analysis suggests a new view of the problem of heating stellar coronas: the coronas of stars with pronounced cycles are probably heated by quasistationary processes in loops, while prolonged nonstationary coronal events are responsible for heating the coronas of F and G stars with high but irregular activity.  相似文献   

10.
A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.  相似文献   

11.
The spectra of two roAp stars have been analyzed as part of a project to study lithium in magnetic Ap stars. Variability of the Li I 6708 Å resonance doublet and rare-earth lines was detected, which can be explained using an oblique rotator model with the lithium spots located at the magnetic poles. Synthetic spectra obtained at different rotational phases have yielded the first data on the atmospheric chemical compositions of these spotted stars. Using refined atomic data and the most complete line lists has enabled a detailed study of the spectra near the Li I 6708 Å line and computation of the Li I line profile taking into account the spotted distribution of the lithium over the stellar surfaces. The positions of two lithium spots and lithium abundances for each of the spots have been determined.  相似文献   

12.
We have used high-resolution spectra to study the chemical composition of HR 1512, a star with effective temperature T eff = 15 200 K, atmospheric gravity log g = 3.52, microturbulence parameter V t = 1.5 km/s, and rotation rate v sin i = 17 km s?1. We confirm the presence of a helium deficiency (?0.6 dex), indicating that HR 1512 is a helium-weak star. Its considerable phosphorus excess (1.6 dex) testifies that the star belongs to the PGa subtype. We suggest that the He and P abundances increase with height; i.e., that there is stratification of He and P in the star’s atmosphere. Among the CNO elements, nitrogen demonstrates an underabundance of ?0.4 dex, while the abundances of carbon and oxygen are solar. Deficits of about ?0.5 or ?0.6 dex were also found for Mg, Si, and S. A neon excess of 0.4 dex was derived from our non-LTE analysis of NeI lines. The largest excess among the iron-peak elements (Cr, Mn, Fe, and Ni) is 0.6 dex, for manganese; the abundances of chromium and nickel display excesses of 0.5 and 0.3 dex, respectively, while the iron abundance is almost normal. The chemical anomalies of HR 1512 generally agree with those for mercury-manganese stars. This supports the hypothesis that PGa stars represent an extension of HgMn stars to higher temperatures.  相似文献   

13.
An analysis of data on chromospheric activity obtained in the framework of exoplanet-search programs is presented. Observations of 1334 stars showing that the chromospheric activity of the Sun is clearly higher than for the vast majority of stars in the solar vicinity are used. A comparison of chromospheric and coronal activity led to the identification of a significant group of stars with a low level of chromospheric activity, whose coronal radiation spans wide ranges. There are reasons to believe that the chromospheric and coronal activities of one group of stars decrease simultaneously as the rotation decelerates, while, in stars of the other group, the chromospheric activity diminishes, but their coronas remain stronger than that of the Sun. Features of cyclic activity of the Sun are discussed. This enables us to associate differences in the behavior of the activity with different depths of the convective zones of stars of spectral classes earlier and later than G6. Arguments in favor of a two-layer dynamo and different roles of the large-scale and small-scale magnetic fields in the formation and evolution of activity are formulated. Age estimations based on activity levels (gyrochronology) must be carried out differently for these different groups of stars.  相似文献   

14.
15.
The paper analyzes possible origins of stars located in intergalactic space that are not bound to specific galaxies, which comprise 15–50% of all stars in galaxy clusters. Some such stars can form in streams of intergalactic gas flowing around gas-rich disk galaxies moving in the cluster. Others may be the products of the decay of young, low-mass, spheroidal galaxies after the loss of their gaseous components during an initial burst of star formation. The decay of low-mass disk galaxies moving at high speeds after they have lost their gaseous components due to the pressure of the incident flow of dense intergalactic gas is possible in the cluster core. The largest fraction of intergalactic stars are probably produced by the partial disruption of galaxies as a result of close passages, collisions, or mergers. Collisions of low-mass, gas-rich galaxies are especially good suppliers of intergalactic stars. Both stars from decaying stellar components of galaxies and stars arising in the gaseous components of colliding galaxies can be supplied to the intergalactic medium. The merger of galaxies harboring supermassive black holes in their nuclei could lead to the partial or total disruption of these galaxies during the deceleration of the binary black hole that is formed during the merger. An enhanced density of intergalactic stars is observed in the cores of galaxy clusters, underscoring the role of galaxy collisions in the formation of the intergalactic stellar population, since the frequency of galaxy collisions grows with their density.  相似文献   

16.
17.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

18.
A list of eclipsing binary stars that may have planetary systems is presented. Eclipsing binaries facilitate the search for planets in binary systems. The presence of eclipses strongly increases the probability that the observer is in the orbital plane of the system, since it is natural to expect that protoplanetary disks and planets are located in or close to this plane. The planets in the listed systems could be detected with the transit method using facilities that are available for a wide range of professional observers, as well as amateur astronomers.  相似文献   

19.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

20.
Dremova  G. N.  Dremov  V. V.  Orlov  V. V.  Tutukov  A. V.  Shirokova  K. S. 《Astronomy Reports》2015,59(11):1019-1035

The probability of forming a Galactic hypervelocity star is estimated for the scenario of Hills, which describes the dynamical capture of one component of a binary star by the gravitational field of the supermassive black hole in the Galactic center, leading to the ejection of the other component. Ten thousand initial orientations of the binary orbits were considered, and the semi-major axes of the binary orbits were varied in a wide range from 11.3 R to 425 R . Two series of computations were carried out, in which the mass of the supermassive black hole was taken to be 106 M and 3.4 × 106 M . Numerical simulations of encounters of the binary and black hole in the framework of the three-body and N-body problems are used to localize regions favorable for the formation of hypervelocity stars. The motion of the ejected star in the regular field of the Galaxy is calculated, and the conditions under which the star escapes the Galaxy defined. The probability of escaping the Galaxy is caluclated as a function of various parameters the initial separation of the binary components and the distance of the binary from the black hole. On average, the probability of forming a hypervelocity star is higher for closer encounters and more tightly bound binary pairs.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号