首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of mass balances in the investigation of the biogeochemical cycle of sulfur is reviewed for three systems: 1) upland catchments, 2) wetlands, and 3) lakes. In upland catchments, the major inputs of sulfur are via wet and dry atmospheric deposition, whereas outputs or losses occur primarily through volatilization and/or runoff. In addition, sulfur may be stored in vegetation and in the forest floor. In wetlands (particularly peatlands), a large proportion of the sulfur inputs are derived from surface and groundwater originating in the upland system. Because of the fluctuating water table in wetlands, they can act as a source or sink for sulfate, depending on the redox conditions. Wetlands, therefore, can significantly affect input-output budgets for lakes. In most lakes, only a small portion of the sulfate input is retained, (i.e. not lost from the lake via outflow), indicating that there is an excess of sulfate relative to biological needs. Seepage lakes are exceptions to this generalization. Although the reactivity of the sulfate input to many lakes is low, sulfate levels, especially in regions receiving substantial atmospheric sulfur deposition, are high enough that the portion reduced results in substantial in-lake alkalinity production; in fact, in many cases, alkalinity production from sulfate reduction is greater than that resulting from not only other in-lake processes but from external sources (the catchment) as well. The importance of mass balance investigations in elucidating the biogeochemical cycling of sulfur is stressed and the need for additional studies on a whole-system basis stressed. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.  相似文献   

3.
Porewater profiles often are used to identify and quantify important biogeochemical processes occurring in lake sediments. In this study, multiple porewater profiles were obtained from two eutrophic Swiss lakes using porewater equilibrators (peepers) in order to examine spatial and seasonal trends in biogeochemical processes. Variability in profile shapes and concentrations was small on spatial scales of a few meters, but the uncertainty in calculated diffusive fluxes across the sediment surface was, on average, 35%. Focusing of Fe and Mn oxides toward the lake center resulted in systematic increases in porewater concentrations and diffusive fluxes of Fe2+ and Mn2+ with increasing water depth; these fluxes are postulated to be regulated by the pH-dependent dissolution of reduced-metal phases. Despite higher concentrations of inorganic carbon, NH 4 + , Si and P in pelagic compared to littoral sites, diffusive fluxes of these substances across the sediment surface increased only slightly or not at all with increasing water depth. Porewater profiles did reveal temporal changes in Fe2+, Mn2+, Ca2+ and Mg2+ that were an indirect result of the large, seasonal changes in seston deposition, but no clear seasonal variations were found in diffusive fluxes of nutrients across the sediment surface. The intense mineralization occurring at the sediment surface was not reflected in the porewater profiles nor in the calculated diffusive fluxes. Calculated diffusive fluxes across the sediment surface resulted from decomposition occurring primarily in the top 5–7 cm of sediment. Diffusive fluxes from this subsurface mineralization were equal to the solute release from mineralization occurring at the sediment-water interface. Buried organic matter acts as a memory of previous lake conditons; it will require at least a decade before reductions in nutrient inputs to lakes fully reduce the diffusive fluxes into the lake from the buried reservoir of organic matter.  相似文献   

4.
In high-elevation lakes of the Sierra Nevada (California), increases in phosphorus (P) supply have been inferred from changes in phytoplankton growth during summer. To quantify rates of sediment P release to high-elevation Sierran lakes, we performed incubations of sediment cores under ambient and reducing conditions at Emerald Lake and analyzed long-term records of lake chemistry for Emerald and Pear lakes. We also measured concentrations of individual P forms in sediments from 50 Sierra Nevada lakes using a sequential fractionation procedure to examine landscape controls on P forms in sediments. On average, the sediments contained 1,445 µg P g?1, of which 5 % was freely exchangeable, 13 % associated with reducible metal hydroxides, 68 % associated with Al hydroxides, and the remaining 14 % stabilized in recalcitrant pools. Multiple linear regression analysis indicated that sediment P fractions were not well correlated with soluble P concentrations. In general, sediments behaved as net sinks for P even under reducing conditions. Our findings suggest that internal P loading does not explain the increase in P availability observed in high-elevation Sierran lakes. Rather, increased atmospheric P inputs and increased P supply via dissolved organic C leaching from soils may be driving the observed changes in P biogeochemistry.  相似文献   

5.
Hydrologic regime plays an important role in maintaining aquatic ecosystem structures and biogeochemical processes of endorheic salt lakes. Due to joint influences of regional climate change, runoff regulation and water withdrawal, ecological water deficiency has been increasingly prominent in endorheic salt lakes in Northwest China, especially in the Inner Mongolian Plateau. Previous studies mainly focused on establishing and applying methods to determine ecological water levels of lakes, while much less attention was paid to a more important problem – how such water levels could be reached under changed watershed hydrological processes. Solutions of this gap were explored in this study using the Dalinuoer Lake as an example. This lake is a typical endorheic salt lake located in the Inner Mongolian Plateau. It is a critical source to provide important ecological services and economic values for locals. Its ecological water level to maintain the optimum salinity threshold was first calculated by applying a statistical analysis of relationships between the phytoplankton biomass, salinity and water level of the lake. Potential measures to preserve the ecological water level of the lake were subsequently evaluated based on a hydrological process analysis of the watershed. The results indicated that the optimum salinity threshold was 5.7 g/L. This value should be also valid for other endorheic salt lakes in this region. According to a function between the water storage and the mean water depth of this lake, the ecological water level was determined to be 10.28 m with an ecological water deficit of 2.5 × 108 m3. A basin water balance analysis using the results proposed measures to maintain a sustainable ecological water level, including controlling local water consumption and infusing ecological water. The results of this study could be extrapolated to other similar conditions to provide guidance for policy-makers, so that better decisions could be hopefully forged to protect eco-hydrological processes of endorheic salt lakes in the Mongolian Plateau, as well as other comparable scenarios.  相似文献   

6.
The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.  相似文献   

7.
Although acidifying deposition in western North America is lower than in many parts of the world, many high‐elevation ecosystems there are extremely sensitive to acidification. Previous studies determined that the Mount Zirkel Wilderness Area (MZWA) has the most acidic snowpack and aquatic ecosystems that are among the most sensitive in the region. In this study, spatial and temporal variability of ponds and lakes in and near the MZWA were examined to determine their sensitivity to acidification and the effects of acidic deposition during and after snowmelt. Within the areas identified as sensitive to acidification based on bedrock types, there was substantial variability in acid‐neutralizing capacity (ANC), which was related to differences in hydrological flowpaths that control delivery of weathering products to surface waters. Geological and topographic maps were of limited use in predicting acid sensitivity because their spatial resolution was not fine enough to capture the variability of these attributes for lakes and ponds with small catchment areas. Many of the lakes are sensitive to acidification (summer and autumn ANC < 100 µeq L?1), but none of them appeared to be threatened immediately by episodic or chronic acidification. In contrast, 22 ponds had minimum ANC < 30 µeq L?1, indicating that they are extremely sensitive to acidic deposition and could be damaged by episodic acidification, although net acidity (ANC < 0) was not measured in any of the ponds during the study. The lowest measured pH value was 5·4, and pH generally remained less than 6·0 throughout early summer in the most sensitive ponds, indicating that biological effects of acidification are possible at levels of atmospheric deposition that occurred during the study. The aquatic chemistry of lakes was dominated by atmospheric deposition and biogeochemical processes in soils and shallow ground water, whereas the aquatic chemistry of ponds was also affected by organic acids and biogeochemical processes in the water column and at the sediment–water interface. These results indicate that conceptual and mechanistic acidification models that have been developed for lakes and streams may be inadequate for predicting acidification in less‐understood systems such as ponds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Water is a limiting factor for life in the McMurdo Dry Valleys (MDV), Antarctica. The active layer (seasonally thawed soil overlying permafrost) accommodates dynamic hydrological and biological processes for 10–16 weeks per year. Wetted margins (visually wetted areas with high moisture content) adjacent to lakes and streams are potential locations of great importance in the MDV because of the regular presence of liquid water, compared with the rest of the landscape where liquid water is rare. At 11 plots (four adjacent to lakes, seven adjacent to streams), soil particle size distribution, soil electrical conductivity, soil water content and isotopic signature, width of the wetted margin, and active layer thaw depth were characterised to determine how these gradients influence physicochemical properties that determine microbial habitat and biogeochemical cycling. Sediments were generally coarse‐grained in wetted margins adjacent to both lakes and streams. Wetted margins ranged from 1·04 to 11·01 m in average length and were found to be longer at lakeside sites than streamside. Average thaw depths ranged from 0·12 to 0·85 m, and were found to be deepest under lake margins. Lake margins also had much higher soil electrical conductivity, steeper topographic gradients, but more gradual soil moisture gradients than stream margins. Patterns of soil water δ18O and δD distribution indicate capillary action and evaporation from wetted margins; margin pore waters generally demonstrated isotopic enrichment with distance from the shore, indicating evaporation of soil water. Lake margin pore waters were significantly more negative in DXS (DXS = δD‐8δ18O) than streamside pore waters, indicating a longer history of evaporation there. Differences between lake and stream margins can be explained by the more consistent availability of water to lake margins than stream margins. Differences in margin characteristics between lakes and streams have important consequences for the microbial habitat of these margins and their functional role in biogeochemical cycling at these terrestrial–aquatic interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Stable isotopes analyses of oxygen and hydrogen of lake water were used to estimate the effect of evaporation (E) on the water quality of four shallow lakes in the Amapá State coast—Amazon/Brazil. These lakes, with different size and hydrologic conditions, were sampled during the course of the 2015/2016 El‐Niño (record‐breaking warming/drought in the Amazon rainforest). Hydrometeorological and water quality parameters were simultaneously performed to the isotopic sampling. The results showed that the evaporation process and the water quality can be explained by climate season and distances from the Atlantic Ocean. Lake evaporation losses ranged from ≈0–22% during the wet season in April/2016 and ≈35.7% during the dry season in November/2015. As expected, the evaporation of lake water was greater during the dry season, but it was higher for lakes farther away from the Atlantic Ocean compared with more coastal lakes due to tidal preponderance and the influence of major river channels. The more inland estuarine lakes showed a lower level of salinity (0.00–0.03 ppt) compared with those closer to the Atlantic Ocean (0.01–0.08 ppt). The El Niño phenomenon, with a lower precipitation in the Amazon basin, may initiate salinization of lakes closer to the Atlantic Ocean. Furthermore, strong mean seasonal variations of evaporation (0.06 ≤ E ≤ 0.22) and other hydrologic parameters were observed (precipitation, water temperature, and water depth), with significant effects on the water quality such as salinity, dissolved oxygen, chlorophyll (p < .05). We conclude that the occurrence of the extreme climatic events can disrupt the biogeochemical and hydrological balance of these aquatic ecosystems and salinization of lakes closer to the Atlantic Ocean.  相似文献   

11.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

12.
《Marine pollution bulletin》2009,58(6-12):335-348
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986–2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si = 16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.  相似文献   

13.
Biogeochemical Indicators of Aquatic Ecosystem Pollution by Heavy Metals   总被引:1,自引:0,他引:1  
Leonova  G. A. 《Water Resources》2004,31(2):195-202
The present-day environmental state of some artificial (Irkutsk, Bratsk, and Novosibirsk reservoirs) and natural (lakes in Altai Territory and Yamal-Nenets Autonomous Okrug and the Tom River) water bodies in Western and Eastern Siberia was evaluated using biogeochemical indicators. The biogeochemical approach is presented as the best for establishing zones of risk and environmental disaster, since biogeochemical cycles play important role in aquatic ecosystems and unite all their blocks as a result of biogenic migration of chemical elements. Aquatic ecosystems transformed under anthropogenic impact are recognized and local sources of water pollution are identified.  相似文献   

14.
湖泊微生物宏基因组学研究进展   总被引:1,自引:0,他引:1  
罗建桦  陶晔  邢鹏  吴庆龙 《湖泊科学》2020,32(1):271-280
湖泊微生物作为湖泊生态系统重要组成部分,在局域和区域的元素循环中发挥着关键作用.由于自然环境中微生物之间的复杂关系和对微生物认知的片面性,可在实验室培养的湖泊微生物比例不足1%.近10年来,宏基因组学技术在微生物生态学研究中得到了广泛应用,不仅扩展了对湖泊微生物群落组成和多样性的认识,更揭示了湖泊微生物的功能多样性和微生物之间的相互作用.特别是基于宏基因组数据的分装(Binning)手段,可以获取大量湖泊中未培养微生物的基因组信息,用于后续的比较基因组、生态进化和培养组学等研究.随着宏基因组学相关学科和技术的不断发展,其将在湖泊微生物生态学基础理论研究和环境生物监测应用中发挥更为重要的作用,成为人类了解湖泊生态系统功能和维持机制的有力工具.  相似文献   

15.
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.  相似文献   

16.
Nutrient fluxes across terrestrial-aquatic boundaries and their subsequent integration into lake nutrient cycles are currently a major topic of aquatic research. Although pollen represents a good substrate for microorganisms, it has been neglected as a terrestrial source of organic matter in lakes. In laboratory experiments, we incubated pollen grains of Pinus sylvestris in water of lakes with different trophy and pH to estimate effects of pollen input and its subsequent microbial degradation on nutrient dynamics. In this ex situ experiment, we measured concentrations of organic carbon, phosphorus and nitrogen in the surrounding water as well as microbial dynamics (bacteria and fungal sporangia) at well-controlled conditions. Besides leaching, chemical and microbial decomposition of pollen was strongest within the first week of incubation. This led to a marked increase of soluble reactive phosphorus and total dissolved nitrogen (up to 0.04 and 1.5 mg L−1, respectively, after 5 days of incubation) in the ambient water. In parallel, pollen grains were rapidly colonized by heterotrophic bacteria and aquatic fungi. Leaching and microbial degradation of pollen accounted for ≥80, ≥40, ≥50% for organic C, N and P, respectively, and did not significantly differ among water samples from the studied lakes. Thus, pollen introduces high amounts of bio-available terrestrial organic matter and nutrients into surface waters within a short time. A rough calculation on P input into oligotrophic Lake Stechlin indicates that pollen plays an important ecological role in nutrient cycling of temperate lakes. This requires further attention in aquatic ecology.  相似文献   

17.
We have developed cleaning methods for extracting diatomopal from bulk marine sediment samples, for measurement of both zinc (Zn) abundance and isotope composition. This cleaning technique was then applied to a set of Holocene core-top samples from the Southern Ocean. The measured δ66Zn (reported relative to the JMCLyon standard) and Zn/Si ratios from the Southern Ocean diatomopal samples range from 0.7 to 1.5‰, and from 14 to 0.9 μmol/mol, respectively. The Zn abundance and isotope composition data show a clear correlation with opal burial rates and other oceanographic parameters. In common with previous work, we interpret the systematic changes in the Zn/Si ratio to be linked to the variability in the concentrations of bioavailable Zn in the ambient surface seawater where the diatom opal is formed. This variability is likely to be primarily controlled by the degree to which Zn is taken up into phytoplankton biomass. The observed systematic pattern in the δ66Zn compositions of the diatomopal core-top samples is, similarly, likely to reflect changes in the δ66Zn composition of the ambient Zn in the surface waters above the core-top sites, which is progressively driven towards isotopically heavier values by preferential incorporation of the lighter isotopes into phytoplankton organic material. Thus, the systematic relationship between Zn isotopes and abundance observed in the core-top diatomopal samples suggests a potential tool for investigating the biogeochemical cycling of Zn in the past surface ocean for down-core diatomopal material. In this respect, it may be possible to test hypotheses that attribute variations in atmospheric CO2 on glacial–interglacial timescales to the degree to which trace metals limited primary productivity in HNLC zones.  相似文献   

18.
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long‐term (~20 years) time series of river export (annual mass yield, Y, and flow‐weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long‐term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long‐term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
湖泊氮素生物地球化学循环及微生物的作用   总被引:19,自引:2,他引:19  
氮素是影响湖泊富营养化的关键元素之一,对湖泊中氮素生物地球化学循环整个过程进行全面的了解,有利于对湖泊富营养化进行控制和治理.本文综述了湖泊生态系统(特别是富营养化湖泊)中氮素的输入、输出及其在沉积物-水界面的迁移转化规律,着重分析和比较了藻型湖泊和草型湖泊的不同食物链中的氮素营养循环过程,重点讨论了微生物参与的硝化作用、反硝化作用、生物固氮和厌氧氨氧化等过程的最新研究进展,并对氮循环相关的研究方法和技术进行了小结.最后指出当前国内外研究中亟待解决的问题,并对湖泊氮循环今后的研究方向提出了建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号