首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
To investigate the impacts of the invasion by bamboo on fluxes of nutrients and pollutants, the nutrient/pollutant fluxes and canopy interactions, including neutralization of acidity, leaching and uptake of nitrogen (N), were characterized in conjunction with rainfall partitioning in a Moso‐bamboo (Phyllostachys pubescens) forest. Measurements of precipitation volume, pH, major ions, and silicate (SiO2) in rainfall, throughfall and stemflow were collected weekly in a Moso‐bamboo forest located in Munakata City, Western Japan for 1 year. Results showed that rainfall partitioning into stemflow was larger than that for other types of forest, which may be due to the properties of Moso‐bamboo forest structure, such as a straight and smooth culm. Inorganic N (NO3 + NH4+) and S (SO42−) fluxes of throughfall and stemflow were approximately 1·6 and 1·3 times higher than that of rainfall, respectively. Contribution of stemflow flux to inorganic N and S fluxes to the forest floor was high. This could be due to lower uptake of inorganic N through culm and a higher rainfall partitioning into stemflow than that for other types of forest. The Moso‐bamboo canopy neutralized rainfall acidity, reducing the fluxes of potentially acidifying compounds via throughfall and stemflow. Canopy leaching of K+ was distinctly higher than that of Mg2+ and Ca2+ and could be related to the high mobility of K+ in plant tissues. Cl and SiO2 were readily leached as for K+. The impact of the invasion by bamboo on nutrient cycling was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The forest canopy can play a significant role in modifying the amount and isotopic composition of water during its passage throughout the near-surface critical zone. Here, partitioning of gross rainfall into interception, throughfall, and stemflow and its implications for the amount and isotopic composition of soil water was studied for red oak, eastern white pine, and eastern hemlock trees in a northern hardwood-conifer forest in south central Ontario, Canada. Stemflow production was greatest for red oak as a result of its upward-projecting branches and least for eastern white pine due to its horizontal branches and rougher bark. These stemflow contributions to the near-bole soil surface failed to produce consistently wetter soils relative to distal locations from the bole for all tree species. There was also no consistent evidence of isotopic enrichment of throughfall and stemflow relative to gross rainfall or of stemflow relative to throughfall for red oak or eastern hemlock. However, there was isotopic enrichment of both throughfall and stemflow for eastern white pine with increasing maximum atmospheric vapour pressure deficit, which may reflect the potential for evaporative fractionation as a result of retention and detention of water moving through the canopy by the rougher bark of this species. Dry soil conditions limited sampling of mobile soil water during the study, and there was no consistent evidence that either throughfall or stemflow fluxes controlled temporal changes in the isotopic signature of soil water beneath the tree. Thus, the potential for throughfall and stemflow fluxes in northern hardwood-conifer forests to modify the isotopic composition of water taken up by the tree via transpiration remains an open question.  相似文献   

4.
Water and nutrient fluxes were studied during a 12-month period in an alerce (Fitzroya cupressoides) forest, located in a remote site at the Cordillera de la Costa (40°05′S) in southern Chile. Measurements of precipitation, throughfall, stemflow, effective precipitation, soil infiltration and stream flow were carried out in an experimental, small watershed. Simultaneously, monthly water samples were collected to determine the concentrations and transport of organic-N, NO3-N, total-P, K+, Ca2+, Na+ and Mg2+ in all levels of forest. Concentration of organic-N, NO3-N, total-P and K+ showed a clear pattern of enrichment in the throughfall, stemflow, effective precipitation and soil infiltration. For Ca2+ and Mg2+, enrichment was observed in the effective precipitation, soil infiltration and stream flow. Annual transport of K+, Na+, Ca2+ and Mg2+ showed that the amounts exported from the forest via stream flow (K+=0·95, Na+=32·44, Ca2+=8·76 and Mg2+=7·16 kg ha−1 yr−1) are less than the inputs via precipitation (K+=6·39, Na+=40·99, Ca2+=15·13 and Mg2+=7·61 kg ha−1 yr−1). The amounts of organic-N and NO3-N exported via stream flow (organic-N=1·04 and No3-N=3·06 kg ha−1 yr−1) were relatively small; however, they represented greater amounts than the inputs via precipitation (organic-N=0·74 and NO3-N=0·97 kg ha−1 yr−1), because of the great contribution of this element in the superficial soil horizon, where the processes of decomposition of organic material, mineralization and immobilization of the nutrients occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Soil water content is a key variable for biogeochemical and atmospheric coupled processes. Its small‐scale heterogeneity impacts the partitioning of precipitation (e.g., deep percolation or transpiration) by triggering threshold processes and connecting flow paths. Forest hydrologists frequently hypothesized that throughfall and stemflow patterns induce soil water content heterogeneity, yet experimental validation is limited. Here, we pursued a pattern‐oriented approach to explore the relationship between net precipitation and soil water content. Both were measured in independent high‐resolution stratified random designs on a 1‐ha temperate mixed beech forest plot in Germany. We recorded throughfall (350 locations) and stemflow (65 trees) for 16 precipitation events in 2015. Soil water content was measured continuously in topsoil and subsoil (210 profiles). Soil wetting was only weakly related to net precipitation patterns. The precipitation‐induced pattern quickly dissipates and returns to a basic pattern, which is temporally stable. Instead, soil hydraulic properties (by the proxy of field capacity) were significantly correlated with this stable soil water content pattern, indicating that soil structure more than net precipitation drives soil water content heterogeneity. Also, both field capacity and soil water content were lower in the immediate vicinity of tree stems compared to further away at all times, including winter, despite stemflow occurrence. Thus, soil structure varies systematically according to vegetation in our site. We conclude that enhanced macroporosity increases gravity‐driven flow in stem proximal areas. Therefore, although soil water content patterns are little affected by net precipitation, the resulting soil water fluxes may strongly be affected. Specifically, this may further enhance the channelling of stemflow to greater depth and beyond the rooting zone.  相似文献   

6.
While the hydrological balance of forest ecosystems has often been studied at the annual level, quantitative studies on the factors determining rainfall partitioning of individual rain events are less frequently reported. Therefore, the effect of the seasonal variation in canopy cover on rainfall partitioning was studied for a mature deciduous beech (Fagus sylvatica L.) tree over a 2‐year period. At the annual level, throughfall amounted to 71% of precipitation, stemflow 8%, and interception 21%. Rainfall partitioning at the event level depended strongly on the amount of rainfall and differed significantly (p < 0·001) between the leafed and the leafless period of the year. Therefore, water fluxes of individual events were described using a multiple regression analysis (ra2 > 0·85, n = 205) with foliation, rainfall characteristics and meteorological variables as predictor variables. For a given amount of rainfall, foliation significantly increased interception and decreased throughfall and stemflow amounts. In addition, rainfall duration, maximum rainfall rate, vapour pressure deficit, and wind speed significantly affected rainfall partitioning at the event level. Increasing maximum hourly rainfall rate increased throughfall and decreased stemflow generation, while higher hourly vapour pressure deficit decreased event throughfall and stemflow amounts. Wind speed decreased throughfall in the growing period only. Since foliation and the event rainfall amount largely determined interception loss, the observed net water input under the deciduous canopy was sensitive to the temporal distribution of rainfall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Many studies have focused on the amount of stemflow in different forests and for different rainfall events, but few studies have focused on how stemflow intensity varies during events or the infiltration of stemflow into the soil. Stemflow may lead to higher water delivery rates at the base of the tree compared with throughfall over the same area and fast and deeper infiltration of this water along roots and other preferential flow pathways. In this study, stemflow amounts and intensities were measured and blue dye experiments were conducted in a mature coniferous forest in coastal British Columbia to examine double funnelling of stemflow. Stemflow accounted for only 1% of precipitation and increased linearly with event total precipitation. Funnelling ratios ranged from less than 1 to almost 20; smaller trees had larger funnelling ratios. Stemflow intensity generally was highest for periods with high‐intensity rainfall later in the event. The maximum stemflow intensities were higher than the maximum precipitation intensities. Dye tracer experiments showed that stemflow infiltrated primarily along roots and was found more frequently at depth than near the soil surface. Lateral flow of stemflow was observed above a dense clay layer for both the throughfall and stemflow experiments. Stemflow appeared to infiltrate deeper (122 cm) than throughfall (85 cm), but this difference was in part a result of site‐specific differences in maximum soil depth. However, the observed high stemflow intensities combined with preferential flow of stemflow may lead to enhanced subsurface stormflow. This suggests that even though stemflow is only a very minor component of the water balance, it may still significantly affect soil moisture, recharge, and runoff generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Forest canopies alter the amount and isotopic composition of precipitation reaching the forest floor. Thus retention, evaporation and transport processes in forest canopies, and their effects on water isotopes, are key to understanding forest water cycling. Using a two-year isotope dataset from a mixed beech/spruce forest in Zurich, Switzerland, we assessed the isotopic offsets between precipitation, throughfall and stemflow. We also analysed how these offsets affect estimates of the fraction of soil water that is derived from winter precipitation. Throughfall was typically enriched in heavy isotopes compared to precipitation, but isotopically lighter than stemflow, with average δ2H of −64.3 ‰, −59.9 ‰ and − 56.3 ‰ in precipitation, throughfall and stemflow, respectively. The differences between beech and spruce were rather small compared to the seasonal differences in precipitation isotopes. Isotopic offsets between precipitation and throughfall/stemflow were smaller during the spring and summer months (March through August) than during fall and winter (September through February). Bulk and mobile soil waters at 10 and 40 cm showed smaller seasonal variations than those in precipitation, throughfall and stemflow, and were isotopically lighter than recent precipitation, with the largest offsets occurring during the summer months (June through August) for bulk soil waters. Thus, bulk soil waters at both depths contain a mixture of precipitation from previous events and seasons, with over-representation of isotopically lighter winter precipitation. Mobile soil waters were more similar to recent precipitation than bulk soil waters were. Throughfall isotopes were slightly heavier than precipitation isotopes, resulting in different sinusoidal fits for seasonal isotopic cycles in precipitation and throughfall. These differences lead to small underestimates in the fraction of soil water originating from winter precipitation, when open-field precipitation rather than throughfall is used as the input data. Together our results highlight the importance of isotope measurements in throughfall and stemflow for the assessment of precipitation seasonality and water cycling across forested landscapes.  相似文献   

9.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   

10.
Solute concentrations and fluxes in rainfall, throughfall and stemflow in two forest types, and stream flow in a 90 ha catchment in southern Chile (39°44′S, 73°10′W) were measured. Bulk precipitation pH was 6·1 and conductivity was low. Cation concentrations in rainfall were low (0·58 mg Ca2+ l?1, 0·13 mg K+ l?1, 0·11 mg Mg2+ l?1 and <0·08 mg NH4–N l?1), except for sodium (1·10 mg l?1). Unexpected high levels of nitrate deposition in rainfall (mean concentration 0·38 mg NO3–N l?1, total flux 6·3 kg NO3–N ha?1) were measured. Concentrations of soluble phosphorous in bulk precipitation and stream flow were below detection limits (<0·09 mg l?1) for all events. Stream‐flow pH was 6·3 and conductivity was 28·3 μs. Stream‐water chemistry was also dominated by sodium (2·70 mg l?1) followed by Ca, Mg and K (1·31, 0·70 and 0·36 mg l?1). The solute budget indicated a net loss of 3·8 kg Na+ ha?1 year?1, 5·4 kg Mg2+ ha?1 year?1, 1·5 kg Ca2+ ha?1 year?1 and 0·9 kg K+ ha?1 year?1, while 4·9 kg NO3–N ha?1 year?1 was retained by the ecosystem. Stream water is not suitable for domestic use owing to high manganese and, especially, iron concentrations. Throughfall and stemflow chemistry at a pine stand (Pinus radiata D. Don) and a native forest site (Siempreverde type), both located within the catchment, were compared. Nitrate fluxes within both forest sites were similar (1·3 kg NO3–N ha?1 year?1 as throughfall). Cation fluxes in net rainfall (throughfall plus stemflow) at the pine stand generally were higher (34·8 kg Na+ ha?1 year?1, 21·5 kg K+ ha?1 year?1, 5·1 kg Mg2+ ha?1 year?1) compared with the secondary native forest site (24·7 kg Na+ ha?1 year?1, 18·9 kg K+ ha?1 year?1 and 4·4 kg Mg2+ ha?1 year?1). However, calcium deposition beneath the native forest stand was higher (15·9 kg Ca2+ ha?1 year?1) compared with the pine stand (12·6 kg Ca2+ ha?1 year?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
From 2011 to 2019, mercury (Hg) stores and fluxes were studied in the small forested catchment Lesní potok (LES) in the central Czech Republic using the watershed mass balance approach together with internal measurements. Mean input fluxes of Hg via open bulk deposition, beech throughfall and spruce throughfall during the periodwere 2.9, 3.9 and 7.6 μg m−2 year−1, respectively. These values were considerably lower than corresponding deposition Hg fluxes reported in the early years of the 21st century from catchments in Germany. Current bulk precipitation inputs at unimpacted Czech mountainous sites were lower than those in Germany. The largest Hg inputs to the catchment were via litterfall, averaging 22.6 and 17.8 μg m−2 year−1 for beech and spruce stands. The average Hg input, based on the sum of mean litterfall and throughfall deposition, was 23.0 μg m−2 year−1, compared to the estimated Hg output in runoff of 0.5 μg m−2 year−1, which is low compared to other reported values. Thus, only ~2% of Hg input is exported in stream runoff. Stream water Hg was only weakly related to dissolved organic carbon (DOC) but both concentrations were positively correlated with water temperature. The estimated total soil Hg pool averaged 47.5 mg m−2, only 4% of which was in the O-horizon. Thus Hg in the O-horizon pool represents 72 years of deposition at the current input flux and 3800 years of export at the current runoff flux. Age-dating by 14C suggested that organic soil contains Hg from recent deposition, while mineral soil at 40–80 cm depth contained 4400-year old carbon, suggesting the soil had accumulated atmospheric Hg inputs through millennia to reach the highest soil Hg pool of the soil profile. These findings suggest that industrial era intensification of the Hg cycle is superimposed on a slower-paced Hg cycle during most of the Holocene.  相似文献   

12.
Tropical rainforest canopy trees that have large projected areas of upwardly inclined branches are capable of funnelling large volumes of rainwater down their trunks. During periods of prolonged heavy rainfall on Mount Bellenden Ker in northeast Queensland, Australia, stemflow volumes were found to be as much as two orders of magnitude greater than the volume of incident rainfall expected in a rain gauge occupying an area equal to the trunk basal area. Stemflow totals ranging from 6000 to 70000 litres were generated by individual trees from 7800 mm of rainfall over two successive wet seasons. The combination of high intensity rainfall and the funnelling effect results in significant quantities of infiltration-excess at the ground surface. Stemflow fluxes as high as 31.4 cm3 min?1 per cm2 of basal area (i.e. the equivalent of 314 mm min?1) were recorded when rainfall intensity was only 2 mm min?1. The mean infiltration capacity of the topsoil was determined to be 6.2 mm min?1. The areas over which the stemflow would have had to spread in order to infiltrate were computed to be as much as 3 m2 around the bases of individual canopy trees. Approximations of the distances that the infiltration-excess would have travelled away from the tree bases were calculated by assuming that the infiltration area either expands radially outward in the form of an annulus or extends straight downslope from the tree base.  相似文献   

13.
The partitioning of gross rainfall into throughfall, stemflow, and interception loss and their relationships with forest structure was studied for a period of four years (October 2002–September 2006) and two years (October 2005–September 2007) in seven experimental catchments of temperate rainforest ecosystems located in the Andes of south‐central Chile (39°37′S, 600–925 m a.s.l.). The amount of throughfall, stemflow, and interception loss was correlated with forest structure characteristics such as basal area, canopy cover, mean quadratic diameter (MQD), and tree species characteristics in evergreen and deciduous forests. Annual rainfall ranged from 4061 to 5308 mm at 815 m a.s.l. and from 3453 to 4660 mm at 714 m a.s.l. Throughfall ranged from 64 to 89% of gross rainfall. Stemflow contributed 0·3–3·4% of net precipitation. Interception losses ranged from 11 to 36% of gross rainfall and depended on the amount of rainfall and characteristics as well as on forest structure, particularly the MQD. For evergreen forests, strong correlations were found between stemflow per tree and tree characteristics such as diameter at breast height (R2 = 0·92, P < 0·01) and crown projection area (R2 = 0·65, P < 0·01). Stemflow per tree was also significantly correlated with epiphyte cover of trunks in the old‐growth evergreen forests (R2 = 0·29, P < 0·05). The difference in the proportion of throughfall and interception loss among stands was significant only during winter. The reported relationships between rainfall partitioning and forest structure and composition provide valuable information for management practices, which aimed at producing other ecosystem services in addition to timber in native rainforests of southern Chile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Catchment hydrology is influenced by land‐use change through alteration of rainfall partitioning processes. We compared rainfall partitioning (throughfall, stemflow and interception) and soil water content in three land‐use types (primary forest, secondary forest and agriculture) in the Santa Fe region of Panama. Seasonal patterns were typified by larger volumes of throughfall and stemflow in the wet season, and the size of precipitation events was the main driver of variation in rainfall redistribution. Land‐use‐related differences in rainfall partitioning were difficult to identify due to the high variability of throughfall. However, annual throughfall in agricultural sites made up a larger proportion of gross precipitation than throughfall in forest sites (94 ± 1, 83 ± 6 and 81 ± 1% for agriculture, primary and secondary forests, respectively). Proportional throughfall (% of gross precipitation becoming throughfall) was consistent throughout the year for primary forest, but for secondary forest, it was larger in the dry season than the wet season. Furthermore, proportional stemflow in the dry season was larger in secondary forest than primary forest. Stemflow, measured only in primary and secondary forests, ranged between 0.9 and 3.2% of gross precipitation. Relative soil moisture content in agricultural plots was generally elevated during the first half of the dry season in comparison to primary and secondary forests. Because throughfall is elevated in agricultural plots, we suggest careful management of the spatial distribution and spread of this land‐use type to mitigate potential negative impacts in the form of floods and high erosion rates in the catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Stemflow production is affected by a suite of biotic and abiotic factors. It has proven difficult to determine the importance of individual canopy structure metrics on stemflow production. The disentanglement of the role and importance of individual canopy structure metrics would advance our understanding of the dynamics of stemflow production. This work employed ten isolated (i.e. no overlapping crowns) experimental European beech (Fagus sylvatica L.) saplings to examine the effects of various canopy structural metrics on stemflow production in east‐central Germany. The following canopy structural metrics were utilized in a hierarchical cluster analysis using Ward's method to separate the saplings into groups: primary branch count per unit projected crown area, secondary branch count per unit projected crown area, total branch count per unit projected crown area, mean branch inclination angle, minimum branch inclination angle, maximum branch inclination angle, total dry woody biomass per unit projected crown area, total foliar dry biomass per unit projected crown area and total dry biomass per unit projected crown area. Cluster group means revealed that saplings, which generate the largest stemflow yields, once controlled for sapling size, have straighter boles (but some trunk lean), more steeply inclined branches, a larger number of branches, more woody surface area and fewer numbers of leaves. Our results may prove valuable as a guide to researchers wishing to couple LiDAR and fine‐scale architectural models with the canopy metrics that govern stemflow to provide a better understanding of the canopy on the hydrology and biogeochemistry of forests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The characteristics of stemflow were observed in a tall stewartia (Stewartia monadelpha) deciduous forest on a hillslope in central Japan, revealing new findings for a previously unreported type of deciduous forest. Using 2-year observations of 250 rainfall events, we analyzed seasonal and spatial variations in stemflow for several trees, and applied additional data sets of throughfall and plant area index (PAI) to produce a rough estimate of seasonal variations in rainfall redistribution processes and canopy architecture for a single tree. Compared to previous findings for other deciduous tree species, the ratios of throughfall, stemflow, and interception to open-area rainfall obviously varied with PAI changes for tall stewartia. Meteorological conditions of rainfall amount, rainfall intensity, wind speed, and wind direction had little effect on stemflow generation, which was mainly affected by variation in canopy architecture. Three novel characteristics of stemflow were identified for several tall stewartia trees. First, the yearly stemflow ratio at the forest-stand level for tall stewartia (12%) was high compared to previous findings on beech and oak stands, indicating tall stewartia has considerably high potential to generate a great amount of stemflow. Second, stemflow tended to be 1.3–2.0 times greater in the leafed period than in the leafless period. Third, the amount of stemflow was 12–132 times greater on the downslope side of the stem than on the upslope side. It likely caused by the uneven area between the upslope and downslope sides of the canopy and by asymmetrical stemflow pathways between the upslope and downslope sides of the trunk due to downslope tilting of the tree trunk.  相似文献   

17.
The rainfall received by a small plot of tropical deciduous forest on sand dunes in Veracruz, Mexico, was partitioned into stemflow and throughfall components to determine whether funnelling by stemflow could reduce soil leaching by transmitting large volumes of water through vertical soil pathways beneath each stem. Although soil infiltration capacities were high, only a very small proportion of incoming rainfall was funnelled by canopy stems. This is attributed to the widely-branched morphology of mature trees. Smaller trees and shrubs were more effective funnellers of rainfall, and a crude estimate of the magnitude of stemflow in the understorey stratum in one rain event suggested a contribution approximately ten times that of canopy stemflow. However, even if augmented by the understorey stratum in this way, total stemflow is unlikely to have exceeded 10 per cent of gross precipitation, implying that it does not represent an important leaching-avoidance mechanism in this forest.  相似文献   

18.
This study aimed at analysing the effects of biological and meteorological factors on stemflow generation in a temperate mixed oak (Quercus petraea Liebl.) and beech (Fagus sylvatica L.) stand. A statistical model was developed to predict single‐event individual stemflow volume from trunk circumference and rainfall depth allowing mechanistic stemflow parameters to be deduced from the model, namely stemflow rates (SFrate), storage of water on tree organs (St) and rainfall thresholds for stemflow (RFmin). SFrate and St increased with increasing trunk circumference while RFmin was not significantly influenced by tree size. RFmin and, for a given tree size, St were higher for oak than for beech, and inversely for SFrate. For each species, RFmin was higher for the leaved season than for the leafless period, while the opposite was found for SFrate, and St was not significantly affected by the season. Increasing wind speed during rain increased SFrate, lowered RFmin and did not influence St. In contrast, St and RFmin tended, respectively, to decrease and to increase with increasing values of the ratio between the cumulated potential evaporation during the dry period preceding the rain event and the volume of the preceding rainfall (Eva pADP/Rprevious). Stemflow volume, which results from the combined effects of the previous parameters, was higher for beech than for oak and also higher during the leafless period than during the leaved period; these differences were large for the smallest events but decreased rapidly as rainfall depth increased. In addition, an enhancing and a depressing effect on stemflow volume were shown for the average wind speed during rain and for the ratio Eva pADP/Rprevious, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Stemflow was evaluated in a water balance and its contribution to groundwater recharge determined. Gross precipitation, throughfall and stemflow were measured for one year in a pine forest (Tsukuba, Japan) to determine each component of the water balance in the forest. Groundwater recharge rates by stemflow and throughfall were calculated from a mass balance method using chloride in subsurface waters. The stemflow in the water balance was relatively small when estimated as a value per canopy projected area of the tree in the forest. However, the results for the mass balance of chloride in subsurface waters indicated that it was impossible to disregard the stemflow in determining groundwater recharge. Although the ratio of stemflow to the net precipitation was small in the water balance, the effect of stemflow on groundwater recharge was relatively large.  相似文献   

20.
Stemflow volume generation in lowland tropical forests was measured over a 1‐year period in the Malaysian state of Sarawak. The stemflow volume generated by 66 free‐standing trees with a diameter at breast height (DBH) over 1 cm and a tree height over 1 m were measured daily in a representative 10 m × 10 m plot of the forest. Throughfall in the plot was also measured using 20 gauges in a fixed position. Of the 2292 mm of total rainfall observed during the year‐long period, stemflow accounted for 3·5%, throughfall for 82% and there was an interception loss of 14·5%. Understory trees (DBH < 10 cm) played an important role in stemflow generation, producing 77% of the overall stemflow volume and 90% during storms with less than 20 mm of rainfall. Also, owing to their efficiency at funneling rainfall or throughfall water received by their crowns, some understory trees noticeably reduced the catches of the throughfall gauges situated under the reach of their crown areas. During storms producing greater than 20 mm of rainfall, 80% of the total stemflow occurred; trees with a large DBH or height and for which the ratio between crown's diameter and depth is less than 1, tended to generate more stemflow volume in these storms. Mean areal stemflow as a fraction of rainfall in this lowland tropical forest was 3·4%, but may range from 1–10% depending upon the proportion of trees that are high or poor stemflow yielders. Trees with DBH greater than 10 cm were likely to contribute less than 1% of the 3·4% mean areal stemflow in the forest. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号