首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
This paper discusses how to use the three‐dimensional (3D) time‐domain finite‐element method incorporating the least‐squares method to calculate the equivalent foundation mass, damping and stiffness matrices. Numerical simulations indicate that the accuracy of these equivalent matrices is acceptable when the applied harmonic force of 1+sine is used. Moreover, the accuracy of the least‐squares method using the 1+sine force is not sensitive to the first time step for inclusion of data. Since the finite‐element method can model problems flexibly, the equivalent mass, damping and stiffness matrices of very complicated soil profiles and foundations can be established without difficulty using this least‐squares method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

4.
Least‐squares reverse time migration provides better imaging result than conventional reverse time migration by reducing the migration artefacts, improving the resolution of the image and balancing the amplitudes of the reflectors. However, it is computationally intensive. To reduce its computational cost, we propose an efficient amplitude encoding least‐squares reverse time migration scheme in the time domain. Although the encoding scheme is effective in increasing the computational efficiency, it also introduces the well‐known crosstalk noise in the gradient that degrades the quality of the imaging result. We analyse the cause of the crosstalk noise using an encoding correlation matrix and then develop two numerical schemes to suppress the crosstalk noise during the inversion process. We test the proposed method with synthetic and field data. Numerical examples show that the proposed scheme can provide better imaging result than reverse time migration, and it also generates images comparable with those from common shot least‐squares reverse time migration but with less computational cost.  相似文献   

5.
Seismic time‐lapse surveys are susceptible to repeatability errors due to varying environmental conditions. To mitigate this problem, we propose the use of interferometric least‐squares migration to estimate the migration images for the baseline and monitor surveys. Here, a known reflector is used as the reference reflector for interferometric least‐squares migration, and the data are approximately redatumed to this reference reflector before imaging. This virtual redatuming mitigates the repeatability errors in the time‐lapse migration image. Results with synthetic and field data show that interferometric least‐squares migration can sometimes reduce or eliminate artifacts caused by non‐repeatability in time‐lapse surveys and provide a high‐resolution estimate of the time‐lapse change in the reservoir.  相似文献   

6.
A procedure for developing equations that estimate the isolator displacement due to strong ground motion is applied to buildings isolated with the friction pendulum system. The resulting design equations, based on rigorous non‐linear analysis, offer an alternative to the iterative equivalent‐linear methods used by current U.S. building codes. The governing equations of the system are reduced to a form such that the median normalized displacement of the system due to an ensemble of ground motions is found to depend on only the isolation period—a function of the curvature of the isolator—and the friction force at incipient slip normalized by peak ground velocity. The normalization is effective in minimizing the dispersion of the normalized displacement for an ensemble of ground motions, implying that the median normalized displacement is a reliable estimate of response. The design equations reflect the significant (20 to 38%) increase in displacement when the excitation includes two lateral components of ground motion instead of just one component. Equivalent‐linear methods are shown to underestimate by up to 30% the exact median displacement determined by non‐linear response history analysis for one component of ground motion, and building codes include at most a 4.4% increase for a second component. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Multi‐decadal groundwater level records, which provide information about long‐term variability and trends, are relatively rare. Whilst a number of studies have sought to reconstruct river flow records, there have been few attempts to reconstruct groundwater level time‐series over a number of decades. Using long rainfall and temperature records, we developed and applied a methodology to do this using a lumped conceptual model. We applied the model to six sites in the UK, in four different aquifers: Chalk, limestone, sandstone and Greensand. Acceptable models of observed monthly groundwater levels were generated at four of the sites, with maximum Nash–Sutcliffe Efficiency scores of between 0.84 and 0.93 over the calibration and evaluation periods, respectively. These four models were then used to reconstruct the monthly groundwater level time‐series over approximately 60 years back to 1910. Uncertainty in the simulated levels associated with model parameters was assessed using the Generalized Likelihood Uncertainty Estimation method. Known historical droughts and wet period in the UK are clearly identifiable in the reconstructed levels, which were compared using the Standardized Groundwater Level Index. Such reconstructed records provide additional information with which to improve estimates of the frequency, severity and duration of groundwater level extremes and their spatial coherence, which for example is important for the assessment of the yield of boreholes during drought periods. Copyright © 2016 British Geological Survey. Hydrological Processes © 2016 John Wiley & Sons Ltd  相似文献   

8.
A procedure based on rigorous non‐linear analysis is presented that estimates the peak deformation among all isolators in an asymmetric building due to strong ground motion. The governing equations are reduced to a form such that the median normalized deformation due to an ensemble of ground motions with given corner period Td depends primarily on four global parameters of the isolation system: the isolation period Tb, the normalized strength η, the torsional‐to‐lateral frequency ratio Ωθ, and the normalized stiffness eccentricity eb/r. The median ratio of the deformations of the asymmetric and corresponding symmetric systems is shown to depend only weakly on Tb, η, and Ωθ, but increases with eb/r. The equation developed to estimate the largest ratio among all isolators depends only on the stiffness eccentricity and the distance from the center of mass to the outlying isolator. This equation, multiplied by an earlier equation for the deformation of the corresponding symmetric system, provides a design equation to estimate the deformations of asymmetric systems. This design equation conservatively estimates the peak deformation among all isolators, but is generally within 10% of the ‘exact’ value. Relative to the non‐linear procedure presented, the peak isolator deformation is shown to be significantly underestimated by the U.S. building code procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A three‐dimensional numerical model was used to simulate the impact of different well‐field configurations on pump‐and‐treat mass removal efficiency for large groundwater contaminant plumes residing in homogeneous and layered domains. Four well‐field configurations were tested, Longitudinal, Distributed, Downgradient, and natural gradient (with no extraction wells). The reductions in contaminant mass discharge (CMDR) as a function of mass removal (MR) were characterized to assess remediation efficiency. Systems whose CDMR‐MR profiles are below the 1:1 relationship curve are associated with more efficient well‐field configurations. For simulations conducted with the homogeneous domain, the CMDR‐MR curves shift leftward, from convex‐downward profiles for natural gradient and Longitudinal to first‐order behaviour for Distributed, and further leftward to a sigmoidal profile for the Downgradient well‐field configuration. These results reveal the maximum potential impacts of well‐field configuration on mass‐removal behaviour, which is attributed to mass‐transfer constraints associated with regions of low flow. In contrast, for the simulations conducted with the layered domain, the CMDR‐MR relationships for the different well‐field configurations exhibit convex‐upward profiles. The nonideal mass‐removal behaviour in this case is influenced by both well‐field configuration and back diffusion associated with low‐permeability units.  相似文献   

10.
Pseudo‐dynamic tests on a large‐scale model of an existing six‐pier bridge were performed at the ELSA laboratory using the substructuring technique. Two physical pier models were constructed and tested in the laboratory, while the deck, the abutments and the remaining four piers were numerically modeled on‐line. These tests on a large‐scale model of an existing bridge are the first to have been performed considering non‐linear behavior for the modeled substructure. Asynchronous input motion, generated for the specific bridge site, was used for the abutments and the pier bases. Three earthquake tests with increasing intensities were carried out, aimed at the assessment of the seismic vulnerability of a typical European motorway bridge designed prior to the modern generation of seismic codes. The experimental results confirm the poor seismic behavior of the bridge, evidenced by irregular distribution of damage, limited deformation capacity, tension shift effects and undesirable failure locations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
We implemented multiple independent field techniques to determine the direction and velocity of groundwater flow at a specific stream reach in a glacier forefield. Time‐lapse experiments were conducted using two electrical resistivity tomography (ERT) lines installed in a cross pattern. A circular array of groundwater tubes was also installed to monitor groundwater flow via discrete salt injections. Both inter‐borehole and ERT results confirmed this stream section as a losing reach and enabled quantification of the flow direction. Both techniques yielded advection velocities varying between 5.7 and 21.8 m/day. Estimates of groundwater flow direction and velocity indicated that groundwater infiltrates from the stream nearby and not from the adjacent lateral moraine. Groundwater age estimated from radon concentration measurements supported this hypothesis. Despite uncertainties inherent to each of the methods deployed, the combination of multiple field techniques allowed drawing consistent conclusions about local groundwater flow. We thus regard our multi‐method approach as a reliable way to characterize the two‐dimensional groundwater flow at sites where more invasive groundwater investigation techniques are difficult to carry out and local heterogeneities can make single measurements unreliable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A non‐linear finite element (FE) model is presented to account for soil column effects on strong ground motion. A three‐dimensional bounding surface plasticity model with a vanishing elastic region, appropriate for non‐liquefiable soils, is formulated to accommodate the effects of plastic deformation right at the onset of loading. The elasto‐plastic constitutive model is cast within the framework of a FE soil column model, and is used to re‐analyse the downhole motion recorded by an array at a Large‐Scale Seismic Test (LSST) site in Lotung, Taiwan, during the earthquake of 20 May 1986; as well as the ground motion recorded at Gilroy 2 reference site during the Loma Prieta earthquake of 17 October 1989. Results of the analysis show maximum permanent shearing strains experienced by the soil column in the order of 0.15 per cent for the Lotung event and 0.8 per cent for the Loma Prieta earthquake, which correspond to modulus reduction factors of about 30 and 10 per cent respectively, implying strong non‐linear response of the soil deposit at the two sites. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, an adaptive on‐line parametric identification algorithm based on the variable trace approach is presented for the identification of non‐linear hysteretic structures. At each time step, this recursive least‐square‐based algorithm upgrades the diagonal elements of the adaptation gain matrix by comparing the values of estimated parameters between two consecutive time steps. Such an approach will enforce a smooth convergence of the parameter values, a fast tracking of the parameter changes and will remain adaptive as time progresses. The effectiveness and efficiency of the proposed algorithm is shown by considering the effects of excitation amplitude, of the measurement units, of larger sampling time interval and of measurement noise. The cases of exact‐, under‐, over‐parameterization of the structural model have been analysed. The proposed algorithm is also quite effective in identifying time‐varying structural parameters to simulate cumulative damage in structural systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Geomorphic effectiveness has been an influential concept in geomorphology since its introduction by Reds Wolman and John Miller in 1960. It provided a much needed framework to assess the significance of an event by comparing event magnitude to the resultant geomorphic effects. Initially, this concept was applied primarily in river channels, under the linear assumption that geomorphic responses to similarly sized flood events will be consistent. Numerous authors have since attempted to quantify a direct, proportional relationship between event magnitude and different forms of geomorphic response in a variety of geomorphic settings. In doing so, these investigations applied an array of metrics that were difficult to compare across different spatiotemporal scales, and physiographic and geomorphic environments. Critically, the emergence of other geomorphic concepts such as sensitivity, connectivity, thresholds, and recovery has shown that relationships between causes (events) and geomorphic effects (responses) are often complex and non‐linear. This paper disentangles the complex historical development of the geomorphic effectiveness concept and reviews the utility of various metrics for quantifying effectiveness. We propose that total energy (joules) is the most appropriate metric to use for quantifying the magnitude of disturbance events (cause) and volumetric sediment flux associated with landform modification is the most appropriate metric for quantifying geomorphic effects. While both metrics are difficult to quantify, they are the only ones which facilitate comparison across a range of spatiotemporal scales (comparability) in a variety of geomorphic environments (flexibility). The geomorphic effectiveness concept can continue to be useful provided that geomorphologists use flexible and comparable metrics. Today, geomorphologists are better prepared to consider the influence of non‐linear processes on determinations of geomorphic effectiveness, allowing investigators to not only determine if a disturbance event was effective but also to explain why or why not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A semi‐analytical solution of the one‐dimensional transport for considering a three‐member decay chain in a single fracture with pulse and Heaviside input sources has been studied using the Laplace transform and its numerical inversion. The results reveal that breakthrough curves of dimensionless concentration for the decay chain of Np‐237, U‐233, and Th‐229 in the fracture can be well demonstrated in the temporal and spatial domains. The conditions with and without retardation effects are also compared. During the preliminary screening phase the solutions are suitable for performance assessment on radioactive waste disposal sites under a one‐dimensional single fracture condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A predictor‐multicorrector implementation of a Time Discontinuous Galerkin method for non‐linear dynamic analysis is described. This implementation is intended to limit the high computational expense typically required by implicit Time Discontinuous Galerkin methods, without degrading their accuracy and stability properties. The algorithm is analysed with reference to conservative Duffing oscillators for which closed‐form solutions are available. Therefore, insight into the accuracy and stability properties of the predictor‐multicorrector algorithm for different approximations of non‐linear internal forces is gained, showing that the properties of the underlying scheme can be substantially retained. Finally, the results of representative numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements illustrate the performance of the numerical scheme and confirm the analytical estimates. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A decision‐aiding methodology for agricultural groundwater management is presented; it is based on the combination of a watershed model, a groundwater flow model, and an optimization model. This methodology was applied to an agricultural watershed in northeastern Greece. The watershed model used was the Soil and Water Assessment Tool (SWAT), which provided recharge rates for the aquifers. These recharge rates were imported in the well‐known MODFLOW groundwater flow model. Both models were calibrated and verified using field data. Then, the nonlinear optimization problem was solved by a piecewise linearization process, in which the Simplex algorithm was applied sequentially. Apart from several pumping and climate change sensitivity scenarios, a land use change scenario and a climate change scenario, combining the three models, were tested, showing the ability of this methodology to be used in the decision‐making process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号