首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Palaeoecological studies carried out in the Chilean Lake District and Chilotan Archipelago (41°–43°S) record full-glacial and late-glacial pollen assemblages beginning just after 21000 and beetle assemblages after 18000, both sets extending until 10000 14C yr BP. Pollen records indicate that Subantarctic Parkland, the vegetation of the early millennia of record, changed after about 14000 yr BP to become open woodland and later North Patagonian Evergreen Forest. Assemblages of plants and beetles, responding more or less in unison to a strong rise in temperature (≥ 6°C), behaved in accord at around 14000 until 13000–12500 yr BP, the beetle fauna displaying a marked increase in obligate forest types. During full-glacial conditions (17400–16100 and 15300 and 14400 yr BP) and in the late-glacial interval (after about 13000 yr BP), however, climate evidently coerced populations dissimilarly, the pollen sequence showing an increase in plant taxa indicative of colder climate, whereas the beetle fauna underwent little or no variation. Contrasting climate modes implied by plants and beetles may be attributed to differential responses to apparent low-order temperature changes (≤ 2–3°C).  相似文献   

2.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Radiocarbon-dated pollen records of two adjacent sediment cores from Canal de la Puntilla (40°57′09″S, 72°54′18″W) in the Chilean Lake District reveal that a sparsely vegetated landscape prevailed during the portion of the Last Glacial Maximum between 20200 and about 14800 14C yr BP. Dominating the vegetation was Nothofagus, Gramineae and Compositae, along with taxa commonly found today above the Andean treeline (Perezia-type, Valeriana) and in Magellanic Moorlands (Donatia, Astelia). Nothofagus expanded between 20200 and 15800 14C yr BP, interrupted by a reversal at 19200 14C yr BP and followed by a prominent increase in Gramineae pollen between 15800 and about 14800 14C yr BP. A major increase in Nothofagus started at about 14800 14C yr BP, followed by an abrupt expansion of thermophilous Valdivian/North Patagonian Rain Forest taxa (Myrtaceae, Lomatia/Gevuina, Hydrangea, etc.) at about 14000 14C yr BP. An opening of the rain forest and an expansion of Podocarpus nubigena, Misodendrum, and Maytenus disticha-type subsequently occurred between 11000 and 10000 14C yr BP. These results suggest that mean annual temperature was 6–7°C colder than at present, with twice the modern annual precipitation between 20200 and 14000 14C yr BP, implying a northward shift and intensification of the westerlies storm-tracks. Slight climate warming occurred between 20200 and 15800 14C yr BP, featuring cooling reversals at 19200 14C yr BP, and later at 15800 14C yr BP. The warming of the last termination started at about 14800 14C yr BP, and reached a total temperature rise of ≥5°C by 12400 14C yr BP, followed by cooling between 11000 and 10000 14C yr BP. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Palynologic and stratigraphic data from Laguna Tahui (42°50′S, 73°30′W) indicate cool-temperate and humid conditions there between 14,000 and 10,000 14C yr B.P., followed by warmer and drier-than-present conditions between 10,000 and 7000 14C yr B.P., and subsequent cooling and rise in precipitation over the last 5800 14C yr. The thermophilous Valdivian trees Eucryphia cordifolia and Caldcluvia paniculata reached their maximum abundance during the early Holocene warm-dry phase (10,000-7000 14C yr B.P.), followed by a rise in lake levels and reexpansion of North Patagonian conifers starting at 7000 and 5800 14C yr B.P., respectively. Variations in the stratigraphic and geographic distribution of temperate rainforests in southern Chile suggest multimillennial trends in temperature and westerly activity, which are spatially and temporally coherent with paleoclimate records from neighboring regions. Climate variability at millennial and submillennial time scales may account for the establishment and persistence of fine-scale mosaics of Valdivian and North Patagonian rainforest species in low- to mid-elevation communities since ∼5800 14C yr B.P.  相似文献   

6.
Full‐glacial pollen assemblages from four radiocarbon‐dated interstadial deposits in southwestern Ohio and southeastern Indiana imply the presence of herbaceous vegetation (tundra or muskeg with subarctic indicator Selaginella selaginoides) on the southern margin of the Miami lobe of the Laurentide Ice Sheet ca. 20 000 14C yr BP. Scattered Picea (spruce) and possibly Pinus (pine) may have developed regionally ca. 19 000 14C yr BP, and ca. 18 000 14C yr BP, respectively. Spruce stumps in growth position support a local source of pollen. Prior to the ca. 14 000 14C yr BP glacial advance, small amounts of Quercus (oak) and other deciduous pollen suggest development of regional boreal (conifer–hardwood) forests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
An Erratum has been published for this article in Journal of Quaternary Science 17(7) 2002, 721. There is conflicting evidence concerning the extent and timing of late Quaternary climate variability in southern South America and how this may be linked to climate change in the Northern Hemisphere. Critical unresolved questions include whether or not a cool period occurred in southern South America during the Younger Dryas Chronozone (YDC) (11 000–10 000 14C yr BP; 13 000–11 200 yr BP), and the timing of wet and dry phases during the Holocene. To date most evidence is from glacial, pollen and beetle records but, in an attempt to resolve these questions, we have used chironomid midges as an independent proxy in one of the first studies of its kind in Patagonia. We investigated the dynamics of midge assemblages during the Late‐glacial and Holocene at Lago Stibnite on the Taitao Peninsula, southern Chile (46°S). Changes in the midge assemblage suggest that the climate may have become cooler and drier during the YDC. During the Holocene there were cyclical changes in the midge assemblage that may have been in response to trophic change and/or to changes in precipitation when conditions appear to have been drier than today at 9400–6300 14C yr BP and 2400–1600 14C yr BP. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

9.
A pollen record from Lago Condorito (41°45'S, 73°07'W) shows prominent vegetation and climate changes at millennial time‐scales, superimposed on multimillennial trends in temperature and westerly activity in northwest Patagonia during the past 15 000 yr. The record shows that evergreen temperate rainforests have dominated the landscape over this interval, with floristic changes ranging from cold‐resistant North Patagonian forests with podocarp conifers to Valdivian forests with thermophilous, summer‐drought resistant species. The long‐term trend shows that cool‐temperate and humid conditions prevailed between 15 000 and 11 000 cal. yr BP, followed by an extreme warm and dry phase between 11 000 and 7600 cal. yr BP, and subsequent cooling events and increase in precipitation that peaked at ca. 5000 cal. yr BP, when Southern Hemisphere alpine glaciers achieved their first Neoglacial maximum. Modern conditions were established at ca. 1800 cal. yr BP, following a warm and dry phase between ca. 2900 and 1800 cal. yr BP. These results suggest that millennial‐scale climate variability during deglacial and post‐glacial times also affected the mid‐latitude region of the South Pacific, supporting the idea that changes in the tropical Pacific might be a key factor in the initiation and/or propagation of millennial‐scale climate variability at regional, hemispheric and global scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The analysis of cores collected in northernmost Baffin Bay, from within the area of the North Water Polynya, permits definition of a composite sedimentary sequence ca. 12 m thick spanning the last 10 000 14C yr, with only a few discontinuities. Palynological analyses were performed in order to reconstruct changes in surface water conditions and biogenic production. Transfer functions, using dinocyst assemblages, were applied to estimate sea‐surface temperature (SST) and salinity, as well as the seasonal duration of sea ice cover. At the base of the record, prior to 9300 14C yr BP, dinocysts and organic linings of benthic foraminifers are sparse, indicating harsh conditions and low productivity. After ca. 9300 14C yr BP, the increased concentration of benthic foraminifers (up to 103 linings cm?3) and dinocyst fluxes (102–103 cysts cm?2 yr?1) reveals high biological productivity related to open‐water conditions. The early to middle Holocene, from ca. 9000 to ca. 3600 14C yr BP, is marked by relatively high species diversity in dinocyst assemblages and the significant occurrence of autotrophic taxa such as Spiniferites elongatus, Pentapharsodinium dalei and Impagidinium pallidum. This assemblage suggests conditions at least as warm as at present. From ca. 6400 to ca. 3600 14C yr BP, transfer functions indicate warmer conditions than at present, with SST in August fluctuating up to 5.5°C. After 3600 14C yr BP, the dinocyst record suggests a trend of decreasing temperature toward modern values, marked by recurrent cooling events. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Fossil beetles and pollen were examined from an intermorainal bog at Puerto Edén, Isla Wellington, Chile (latitude 49°08'S, longitude 74°25'W). Wood from near the base of the section has an age of 12 960 ± 150 yr BP. Occurrence of flightless beetle species in the basal peat sample is evidence that some members of the biota survived the last glacial maximum in refugia. The assumption that the Chilean Channels were entirely ice-covered is incorrect. Plants and insects that invaded the deglaciated terrain were those of an Empetrum heathland in which patches of Nothofagus forest were restricted to sheltered locations. The climate supporting the heathland is inferred to have been windier and probably drier than that of the present day. From 13 000 yr BP to 9500 yr BP Nothofagus forest expanded, possibly in response to less windiness and more available moisture. Neither the fossil beetle nor pollen data support a return to significantly colder conditions between 11 000 and 10 000 yr BP at the time of the Younger Dryas Stade. From 9500 to 5500 yr BP the climate was as wet as that of the present day, based on an increased representation of the pollen of moorland plants and of aquatic beetle species. From 5500 to 3000 yr BP the climate was drier, as indicated by the expansion of Empetrum heath and the reduction in mesic habitats. From 3000 yr BP to the present-day mesic habitats dominated as the climate returned to a wetter mode. The alternatively wetter and drier episodes are attributed to latitudinal shifts in the position of storm tracks in the belt of Southern Westerlies.  相似文献   

12.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Stratigraphy, mineralogy, major and trace elements, organic carbon, carbonate, sulfate and AMS 14C dates are used to infer Late Quaternary depositional environments and paleo-hydrological conditions in the paleo-lake San Felipe located in the western part of Sonora Desert. Sediment stratigraphy divides the depth profile into aeolian and pluvio-lacustrine regimes. Aeolian regime is constrained to >44.5 14C kyr BP. The pluvio-lacustrine regime consists of two stratigraphic units with characteristic geochemical proxies indicating changing chemical weathering, clastic input, salinity and provenance and provides a measure of varying climatic conditions between ca. 37 and 3 14C kyr BP. Lower catchment erosion and inflow into the basin, higher lake productivity, precipitation of Na-sulfate mineral and higher clastic input from the proximal aeolian deposits during ca. 37–14 14C kyr BP are comparable to the regional registers of dominant winter rainfall related to westerly storm tracks and colder conditions. In the last 12 14C kyr BP, higher sedimentation and inflow and lower productivity are comparable to dominant summer rainfall. Higher humidity and lake productivity during ca. 37–29 14C kyr BP is possibly due to the position of westerly storm tracks at 31°N and the gradually reducing humidity till ca. 14 14C kyr BP is related to northerly migration of westerly storm tracks. Regional arid conditions during ca. 11 14C kyr BP and ca. 6 14C kyr BP are characterized by influx of coarser quartz and feldspars into the basin.  相似文献   

15.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This study investigated Holocene tree‐line history and climatic change in the pre‐Polar Urals, northeast European Russia. A sediment core from Mezhgornoe Lake situated at the present‐day alpine tree‐line was studied for pollen, plant macrofossils, Cladocera and diatoms. A peat section from Vangyr Mire in the nearby mixed mountain taiga zone was analysed for pollen. The results suggest that the study area experienced a climatic optimum in the early Holocene and that summer temperatures were at least 2°C warmer than today. Tree birch immigrated to the Mezhgornoe Lake area at the onset of the Holocene. Mixed spruce forests followed at ca. 9500–9000 14C yr BP. Climate was moist and the water level of Mezhgornoe Lake rose rapidly. The hypsithermal phase lasted until ca. 5500–4500 14C yr BP, after which the mixed forest withdrew from the Mezhgornoe catchment as a result of the climate cooling. The gradual altitudinal downward shift of vegetation zones resulted in the present situation, with larch forming the tree‐line. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
The stratigraphy in Hamnsundhelleren is as follows. A basal weathered rock bed of unknown age is followed by laminated clay deposited under stadial conditions and correlated with palaeomagnetism to the Laschamp excursion (43–47 000 yr BP). Angular blocks, bones and clay above this are 14C dated to the Ålesund Interstadial (28–38 000 yr BP). Another stadial laminated clay following the Ålesund Interstadial includes a palaeomagnetic excursion correlated with Lake Mungo (28 000 yr BP). The newly discovered Hamnsund Interstadial above this consists of frost-weathered clay and scattered angular blocks. It is 14C dated to 24 500 yr BP on bones mixed into the Ålesund Interstadial. The Hamnsund Interstadial is succeeded by another stadial laminated clay and then a Late-glacial–Holocene mixture of bones and blocks. In Hamnsundhelleren and other similar caves four successive phases of sedimentary environments for each ice-free–ice-covered cycle have been identified: (i) ice-free phase (deposition of bones and frost-weathered blocks); (ii) subaerial ice-dammed lake phase (sand or silt deposited in a lateral glacial lake); (iii) subglacial ice-dammed lake phase (cave closed by ice, deposition of till, debris flows and laminated clay); (d) ice-plugged phase (cave is plugged by frozen lake water and/or glacial ice, no deposition).  相似文献   

18.
The sedimentary succession of piston core RC26-16, dated by 14C accelerator mass spectrometry, provides a nearly continuous palaeoceanographic record of the northeastern South China Sea for the last 15000 yr. Planktic foraminiferal assemblages indicate that winter sea-surface temperatures (SSTs) rose from 18°C to about 24°C from the last glacial to the Holocene. A short-lived cooling of 1°C in winter temperature centred at about 11000 14C yr ago may reflect the Younger Dryas cooling event in this area. Summer SSTs have remained between 27°C and 29°C throughout the record. The temperature difference between summer and winter was about ca. 9°C during the last glacial, much higher than the Holocene value of ca. 5°C. During the late Holocene a short-lived cooling event occurred at about 4000 14C yr ago. Oxygen and carbon isotopic gradients between surface (0–50 m) and subsurface (50–100 m) waters were smaller during the last glacial than those in the Holocene. The fluctuation in the isotopic gradients are caused most likely by changes in upwelling intensity. Smaller gradients indicate stronger upwelling during the glacial winter monsoon. The fauna-derived estimates of nutrient content of the surface waters indicate that the upwelling induced higher fertility and biological productivity during the glacial. The winter monsoon became weaker during the Holocene. The carbonate compensation depth and foraminiferal lysocline were shallower during the Holocene, except for a short-lived deepening at about 5000 14C yr ago. A preservation peak of planktic foraminifera and calcium carbonate occurred between 13400 and 12000 14C yr ago, synchronous to the global preservation event of Termination I.  相似文献   

19.
Lynch's Crater preserves a continuous, high‐resolution record of environmental changes in north Queensland. This record suggests a marked increase in burning that appears to be independent of any known major climatic boundaries. This increase is accompanied, or closely followed, by the virtually complete replacement of rainforest by sclerophyll vegetation. The absence of any major climatic shift associated with this increase in fire frequency therefore has been interpreted as a result of early human impact in the area. The age for this increase in burning, on the basis of conventional radiocarbon dating, was previously thought to be approximately 38 000 14C yr BP, supporting the traditional model for human arrival in Australia at 40 000 14C yr BP Here we have applied a more rigorous pre‐treatment and graphitisation procedure for radiocarbon dating samples from the Lynch's Crater sequence. These new dates suggest that the increase in fire frequency occurred at 45 000 14C yr BP, supporting the alternative view that human occupation of Australia occurred by at least 45 000–55 000 cal. yr BP. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Climate variability during the Late Pleistocene is studied from the proxies in core CK-2 drilled from the Luobei Depression (91°03′E, 40°47′N), Lop Nur in the eastern Tarim Basin, Xinjiang, China. Geophysical and geochemical properties, including magnetic susceptibility, granularity, chroma, carbonate content, loss on ignition and trace elements, have been determined to reconstruct the environmental evolution of the area during 32–9 ka BP. The chronology is established by uranium–thorium disequilibrium dating techniques.Our data suggest four paleoclimate stages, indicating glacial variations between cold–humid and warm–arid environments. A period of extreme humidity occurred during 31,900–19,200 yr BP is attributed the last glacial maximum (LGM). The period was followed by a warm–arid episode during 19,200–13,500 yr BP. Then a cold–humid interval during 13,500–12,700 yr BP may correspond to another cooling phases at high latitudes of the Northern Hemisphere. The last stage from 12,700 to 9000 yr BP has a trend that the climate turned warm and arid. The Lop Nur region is characterized by particularly humid stadials and arid interstadials. The climate variability in Lop Nur was constrained by global climate change because it is correlated with Dansgaard–Oeschger and Heinrich events, which were observed at the northern high latitudes. The synchroneity of the palaeoclimatic events suggested that cold air activity at the northern high latitudes was the most important factor that influenced the climate evolution in the Lop Nur region. A probable mechanism that involves the migration of westerly winds is proposed to interpret this synchroneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号