首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examines the spatial distributions of third‐order moments of velocity fluctuations, the turbulent kinetic energy (TKE) fluxes, and the conditional statistics of Reynolds shear stress across the equilibrium crescentic scour structures generated upstream of short horizontal static cylinders. Detailed velocity data were collected using three‐dimensional (3D) micro‐acoustic Doppler velocimeter (ADV) across and within the equilibrium scour marks. The analysis reveals that the positive and negative values of third‐order moments associated with the level bed surface and the scour holes are directly related to coherent structures. The components of TKE flux are discussed for the near‐bed region of the level bed surface and scour holes in relation to sweep–ejection events. A cumulant‐discard method is applied to the Gram‐Charlier probability distribution of two variables to describe the statistical properties of the term u′w′. The conditional statistics of the Reynolds shear stress show a good agreement with the experimental data. The distribution of the joint probability density function in the near‐bed region changes cyclically along the scour hole depending on the bottom fluid velocity, which implies a change from upward to downward flux of momentum and vice versa. Both the ejection and sweep events at near‐bed points on the level surface are more important than within the scour region; and in contrast, both events are stronger for the scour marks than the level bed surface at the outer layer. Sweeps dominate over ejections for the scour hole induced by smaller diameter and ejections dominate for larger diameter. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Combined open channel flow is encountered in many hydraulic engineering structures and processes, such as irrigation ditches and wastewater treatment facilities. Extensive experimental studies have conducted to investigate combined flow characteristics. Nevertheless, there is no simple relationship that can fully describe the velocity profiles in a turbulent flow. The artificial neural network (ANN) has great computational capability for solving various complex problems, such as function approximation. The main objective of this study is to evaluate the applicability of the ANN for simulating velocity profiles, velocity contours and estimating the discharges accordingly. The velocity profiles measured by an acoustic doppler velocimeter in the open channel of the Chihtan purification plant, Taipei, with different discharges at fixed measuring section and different depths are presented. The total number of data sets is 640 and the data sets are split into two subsets, i.e. training and validation sets. The backpropagation algorithm is used to construct the neural network. The results demonstrate that the velocity profiles can be modelled by the ANN, and the ANN constructed can nicely fit the velocity profiles and can precisely predict the discharges for the conditions investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Velocity measurements carried out by an acoustic doppler velocimeter (ADV) in a rectangular laboratory ?ume having a gravel bed are presented. The velocity pro?les are measured in six verticals of the channel cross‐section having an increasing distance (from 4 to 38·5 cm) from the ?ume wall. The experimental runs are carried out for ?ve different bed arrangements, characterized by different concentrations of coarser elements, and for the two conditions of small‐ and large‐scale roughness. For both hydraulic conditions, the velocity measurements are ?rst used to test the applicability of the Dean pro?le and of the logarithmic pro?le corrected by a divergence function proposed in this paper. Then, for each value of the depth sediment ratio h/d84, the non‐dimensional friction factor parameter is calculated by integration of the measured velocity distributions in the different verticals of the cross‐section. Finally a semi‐logarithmic ?ow resistance equation is empirically deduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Two field tests were completed to compare the performance of an electromagnetic current meter (ECM) with that of an acoustic Doppler velocimeter (ADV) in gravel‐bed rivers. Research was particularly motivated by the need to measure flow properties in highly energetic turbulent flows. Measurements were made at two field sites, one at moderate velocities (up to 70 cm/s) and with moderate turbulence intensities (10–20% of mean flow), and the other in an area of non‐uniform flow that included locations with fast mean velocities (up to 1.75 m/s) and high turbulent intensities (up to 50% of mean flow). Comparison of means, standard deviations, turbulent kinetic energy and Reynolds shear stress confirm the general agreement between the ECMs and ADVs. The general agreement is subject to limitations associated with the sample volume and frequency response of the instruments, and only applies within restricted velocity (up to ≈1.25 m/s) and turbulence intensity ranges (up to ≈0·125 m/s). At higher turbulence intensities, spectral analysis showed anomalous behavior of the ADV signal, especially in the vertical velocity component. Quadrant analysis of the Reynolds stress suggests that these problems occur predominantly in quadrants 1 and 3. Errors in ADV measurements were estimated using four different methods: one that utilized the characteristic noise floor in spectral plots, one based on internal ADV measurements of signal correlation and two techniques that aggregate errors related to various sub‐factors. Estimates were divergent at high flows. Techniques that rely on sub‐factors appeared to underestimate the impact of high turbulence on signal quality. The key conclusion for future field applications is that the older ECM technology provides the more reliable estimates of flow parameters in high turbulence. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

6.
The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three‐dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross‐section vector and contouring), and analysis of a range of ADCP‐derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open‐source code along with this publication. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

7.
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A new method for earthquake prediction by earth-resistivity measurements   总被引:1,自引:0,他引:1  
A new method for earthquake prediction by earth-resistivity measurements(薛顺章)(温新民)(董永德)(梁子彬)(张庆渊)(赵和云)Anewmethodforearthquake...  相似文献   

9.
Abstract

With increased interest and requirements in surface water quality and hydrodynamics, additional information is needed about water flow in streams. The mobile OTT Qliner with acoustic Doppler technology (ADQ) provides a highly efficient and accurate way of collecting this information. For this study we completed 366 measurements of flow velocity, water depth and discharge with ADQ from September 2010 to June 2011 at 174 cross-sections in eight catchments of different sizes located in northern Germany, central Germany and southeastern China. The measurements were used to study the accuracy, reproducibility and sensitivity of the device, and to improve the hydrodynamic sampling for medium-sized rivers and channels by investigating its internal settings. The observations reported clearly show that the results of flow average, profile, layer and point values obtained with the ADQ compare very well with those of electromagnetic or ultrasonic devices. In general, the average flow velocity gives the highest agreement. Vertical velocity has a better quality than the layer velocity, which indicates a greater precision in the horizontal than in the perpendicular direction. Point velocity, the composite of vertical velocity and layer velocity, has intermediate precision. Tests on internal settings revealed that measurement is more sensitive to cell size than to time interval setting. A cell size to depth ratio of between 0.1 and 0.2 m produced the highest reliability. A measurement period of 30 s is needed for velocities faster than 0.3 m/s; for shallow and slow-flowing rivers, an interval of 50 s or even greater is recommended. The closer the measured points were to the river bank or bed, the greater the measurement error. The river bed can also influence the measurement more distinctly than the river bank.

Editor D. Koutsoyiannis; Associate editor A. Montanari

Citation Song, S., Schmalz, B., Hörmann, G., and Fohrer, N., 2012. Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrological Sciences Journal, 57 (8), 1626–1641.  相似文献   

10.
A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the forecasts at...  相似文献   

11.
由于存在各种地电干扰, 电磁法勘探采集到的原始电场数据中往往包含粗大误差.电磁法勘探中信号量的测量与传统的精密测量在误差来源与特点、测量值分布等方面均存在较大差异.经试验, 对电磁勘探采集到的原始电场数据采用传统的莱伊达、格拉布斯、狄克逊等准则进行粗大误差的自动判别和剔除, 处理效果不好;采用Robust估计和中值滤波方法, 也不能达到满意的效果;采用手工方式挑拣剔除粗大误差, 处理效率太低, 均不能满足电磁勘探数据预处理的要求.作者提出了一种自适应双向均方差阈值法实现电磁勘探数据粗大误差的自动判别和剔除, 此方法对采集到的原始电场数据样本进行排序后, 采用迭代或递归的方式, 每次均以中点为界分别计算前后两部分数据的均方差, 将较大的一个与预先设置的均方差阈值进行比较, 若其大于阈值, 则判断粗大误差存在于相应的一端, 进而剔除相应端端点位置的数据点;若前后均方差值都小于阈值或样本数量小于3个时算法结束.此方法具有自适应优化、阈值参数化控制、适应小样本数据以及计算简单效率高等特点.大量实验结果表明:在选取均方差阈值在30至90范围内时(经验值), 能够有效地剔除电磁勘探原始电场数据中的粗大误差, 保留最可信数据.目前已在多个实际勘探生产项目中应用此方法处理粗大误差, 取得了令人满意的处理效果.  相似文献   

12.
Large‐scale flow structures (LSFS) in the streamwise direction are important features of gravel‐bed river flows, because they may contribute to sediment transport and gas exchange. In the present study, these structures are detected using Huang's empirical mode decomposition and reconstructed with phase‐averaging techniques based on a Hilbert transform of the velocity signal. The analysis is based on the fluctuating component of 15 quasi‐instantaneous velocity profiles measured with a three‐dimensional (3D) acoustic Doppler velocity profiler (ADVP) in an armoured gravel‐bed river with a low relative submergence of 2.9 (ratio between flow depth and bed grain diameter). LSFS were identified in most of the measured profiles and consistently showed similar features. We were able to characterize the geometry of these large‐scale coherent structures: the front has a vertical linear shift in the time domain and a vertical profile corresponding to a first quarter moon with the apex situated at z/h ≈ 0.4. In the vertical, the front scales with flow depth h, and in the streamwise direction, LSFS scale with three to seven times the mean flow depth. On the bed, the effect of LSFS is a periodic non‐linear variation of the friction velocity on average between 0.90 and 1.10 times the mean value. A model for the friction velocity cycle resulting from LSFS oscillation is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The acquisition of reliable discharge estimates is crucial in hydrological studies. This study demonstrates a promising acoustic method for measuring streamflow at high sampling rate for a long period using the fluvial acoustic tomography system (FATS). The FATS recently emerged as an innovative technique for continuous measurements of streamflow. In contrast to the traditional point/transect measurements of discharge, the FATS enables the depth‐averaged and range‐averaged flow velocity along the ray path to be measured in a fraction of a second. The field test was conducted in a shallow gravel‐bed river (0.9 m deep under low‐flow conditions, 115 m wide) for 1 month. The parameters (stream direction and bottom elevation) required for calculating the streamflow were deduced by a nonlinear regression to the discharge data from the well‐established rating curve. The cross‐sectional average velocities were automatically calculated from the acoustic data, which were collected on both riverbanks every 30 s. The FATS was connected to the internet so that the real‐time flow data could be obtained. The FATS captured discharge variations at a cut‐off frequency of approximately 70 day?1. The stream exhibited temporal discharge changes at multiple time scales ranging from a few tens of minutes to days. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A simple image‐based method for measuring plane strain fields on the surface of specimens in earthquake engineering experiments was developed. This method integrated camera calibration, stereo triangulation, image metric rectification and image template matching techniques to develop a method that was cost‐effective, easy to apply and provided a satisfactory level of measurement accuracy. A zero‐strain test conducted using this method showed that the measurement accuracy achieved was 0.04 pixels. That is, the relative displacement accuracy achieved was 0.005 mm and the strain accuracy was 0.001. This level of accuracy was achieved using eight‐mega‐pixel digital cameras to measure a 17 cm × 28 cm measurement region. Cracks that were 0.012 mm wide were identified in the concrete by examining the displacement fields calculated through the application of this image‐based method in an RC‐wall experiment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Since earthquake ground motions are very uncertain even with the present knowledge, it is desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new non‐stationary random critical excitation method is proposed. In contrast to the conventional critical excitation methods, a stochastic response index is treated as the objective function to be maximized. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. It is shown that the original idea for stationary random inputs can be utilized effectively in the procedure for finding a critical excitation for non‐stationary random inputs. The key for finding the new non‐stationary random critical excitation is the exchange of the order of the double maximization procedures with respect to time and to the power spectral density function. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Soil moisture has a pronounced effect on earth surface processes. Global soil moisture is strongly driven by climate, whereas at finer scales, the role of non‐climatic drivers becomes more important. We provide insights into the significance of soil and land surface properties in landscape‐scale soil moisture variation by utilizing high‐resolution light detection and ranging (LiDAR) data and extensive field investigations. The data consist of 1200 study plots located in a high‐latitude landscape of mountain tundra in north‐western Finland. We measured the plots three times during growing season 2016 with a hand‐held time‐domain reflectometry sensor. To model soil moisture and its temporal variation, we used four statistical modelling methods: generalized linear models, generalized additive models, boosted regression trees, and random forests. The model fit of the soil moisture models were R2 = 0.60 and root mean square error (RMSE) 8.04 VWC% on average, while the temporal variation models showed a lower fit of R2 = 0.25 and RMSE 13.11 CV%. The predictive performances for the former were R2 = 0.47 and RMSE 9.34 VWC%, and for the latter R2 = 0.01 and RMSE 15.29 CV%. Results were similar across the modelling methods, demonstrating a consistent pattern. Soil moisture and its temporal variation showed strong heterogeneity over short distances; therefore, soil moisture modelling benefits from high‐resolution predictors, such as LiDAR based variables. In the soil moisture models, the strongest predictor was SAGA (System for Automated Geoscientific Analyses) wetness index (SWI), based on a 1 m2 digital terrain model derived from LiDAR data, which outperformed soil predictors. Thus, our study supports the use of LiDAR based SWI in explaining fine‐scale soil moisture variation. In the temporal variation models, the strongest predictor was the field‐quantified organic layer depth variable. Our results show that spatial soil moisture predictions can be based on soil and land surface properties, yet the temporal models require further investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
The increasing availability of large, detailed digital representations of the Earth's surface demands the application of objective and quantitative analyses. Given recent advances in the understanding of the mechanisms of formation of linear bedform features from a range of environments, objective measurement of their wavelength, orientation, crest and trough positions, height and asymmetry is highly desirable. These parameters are also of use when determining observation‐based parameters for use in many applications such as numerical modelling, surface classification and sediment transport pathway analysis. Here, we (i) adapt and extend extant techniques to provide a suite of semi‐automatic tools which calculate crest orientation, wavelength, height, asymmetry direction and asymmetry ratios of bedforms, and then (ii) undertake sensitivity tests on synthetic data, increasingly complex seabeds and a very large‐scale (39 000 km2) aeolian dune system. The automated results are compared with traditional, manually derived, measurements at each stage. This new approach successfully analyses different types of topographic data (from aeolian and marine environments) from a range of sources, with tens of millions of data points being processed in a semi‐automated and objective manner within minutes rather than hours or days. The results from these analyses show there is significant variability in all measurable parameters in what might otherwise be considered uniform bedform fields. For example, the dunes of the Rub' al Khali on the Arabian peninsula are shown to exhibit deviations in dimensions from global trends. Morphological and dune asymmetry analysis of the Rub' al Khali suggests parts of the sand sea may be adjusting to a changed wind regime from that during their formation 100 to 10 ka BP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
DDM(Depth—Density Method)方法是将地震时间剖面直接反演成深度、密度剖面的一种地震资料处理方法,在几千米的勘探深度范围内,该方法可以使地震勘探的精度由相对精度用绝对精度来表示;使分辨率由十几米提高到2~3米;从深度、密度剖面中,地质人员可以解释出地层的岩性,时代、砂体的厚度、沉积旋回、沉积粒序,几米、十几米的断层和褶皱,本文主要简介该方法的工作原理、地质解释的原则和在生产中的应用实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号