首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The role of El Niño/Southern Oscillation (ENSO) and the mechanism through which ENSO influences the precipitation variability over northwest India and the adjoining (NWIA) region is well documented. In this study, the relative role of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) and ENSO in modulating the Asian jet stream in the Northern Hemisphere winter and their relative impact on the precipitation variability over the region have been estimated through analysis of observed data. It is seen that interannual variations of NWIA precipitation are largely influenced by ENSO. An empirical orthogonal function (EOF) analysis has been carried out to understand dominant modes of interannual variability of zonal wind at 200 hPa of the Northern Hemisphere. The EOF-1 pattern in the tropical region is similar to that of an ENSO pattern, and the principal component (PC) time series corresponds to the ENSO time series. The EOF-2 spatial pattern resembles that of NAO/AO with correlation of PC time series with AO and NAO being 0.74 and 0.62, respectively. The precipitation anomaly time series over the region of interest has marginally higher correlation with the PC-2 time series as compared to that of PC-1. Regression analysis of precipitation and circulation parameters indicates a larger contribution of the second mode to variability of winds and precipitation over the NWIA. Moisture transport from the Arabian Sea during the active phase of NAO/AO and the presence of a cyclonic anomaly lead to higher precipitation over the NWIA region.  相似文献   

2.
Ram R. Yadav 《Climate Dynamics》2011,36(7-8):1453-1462
Tree-ring-width data of Himalayan cedar [Cedrus deodara (Roxb.) G. Don] from 11 homogeneous moisture stressed sites in the monsoon shadow zone of the western Himalaya were used to develop a mean chronology extending back to ad 1353. The chronology developed using Regional Curve Standardization method is the first from the Himalayan region of India showing centennial-scale variations. The calibration of ring-width chronology with instrumental precipitation data available from stations close to the tree ring sampling sites showed strong, direct relationship with March?CApril?CMay?CJune (MAMJ) precipitation. This strong relationship was used to supplement the instrumental precipitation data back to ad 1410. The precipitation reconstruction showed extended period of drought in fifteenth and sixteenth centuries. Increasingly pluvial conditions were recorded since eighteenth century, with the highest precipitation in the early part of the nineteenth century. The decreasing trend in reconstructed precipitation in the last decade of the twentieth century, consistent with the instrumental records, is associated with the decreasing trend in frequency of western disturbances. MAMJ precipitation over the monsoon shadow zone in the western Himalaya is directly associated with the North Atlantic Oscillation (NAO) and NINO3-SST index of El Nino-Southern Oscillation (ENSO), the leading modes of climate variability influencing climate over large parts of the Northern Hemisphere. However, the relationship between ENSO and MAMJ precipitation collapsed completely during 1930?C1960. The breakdown in this relationship is associated with the warm phase of Atlantic Multidecadal Oscillation (AMO). A spectral analysis of reconstructed MAMJ precipitation indicates frequencies in the range of the variability associated with modes of NAO, ENSO and AMO.  相似文献   

3.
The atmospheric low frequency variability at a regional or global scale is represented by teleconnection. Using monthly dataset of the Climatic Research Unit (CRU) for the period 1971–2016, the impacts of four large-scale teleconnection patterns on the climate variability over Southwest Asia are investigated. The large-scale features include the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and the East Atlantic (EA) teleconnection patterns, as well as western tropical Indian Ocean (WTIO) sea surface temperature anomaly index. Results indicate that ENSO and EA are the first leading modes that explain variation of Southwest Asian precipitation, with positive (negative) anomalies during El Niño (La Niña) and the negative (positive) phase of EA. Variation of Southwest Asian near-surface temperature is most strongly related to WTIO index, with above-average (below-average) temperature during the positive (negative) phase of WTIO index, although the negative (positive) phase of NAO also favours the above-average (below-average) temperature. On the other hand, temperature (precipitation) over Southwest Asia shows the least response to ENSO (WTIO). ENSO and EA individually explain 13 percent annual variance of precipitation, while WTIO index explains 36 percent annual variance of near-surface temperature over Southwest Asia. Analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis Interim (ERA-Interim) data indicated establishments of negative (positive) geopotential height anomalies in the middle troposphere over Southwest Asia during El Niño (La Niña) or the negative (positive) phase of NAO, EA and WTIO. The response of precipitation variability over Southwest Asia to NAO is opposite to that expected from the geopotential height anomalies, but the correlation between precipitation and NAO is not statistically significant. Due to predictability of large-scale teleconnections, results of this study are encouraging for improvement of the state-of-the-art seasonal prediction of the climate over Southwest Asia.  相似文献   

4.
 Analysis of data from seventeen rainfall stations in the Iberian Peninsula, Balearic Islands and Northern Africa has revealed significant El Ni?o-Southern Oscillation (ENSO) signals in Europe. Both North Atlantic Oscillation (NAO) and Southern Oscillation (SO) exert an influence on Iberian climate, but at different temporal and spatial scales. Though most of the peninsula is under NAO influence in winter, some stations in the eastern region show no connection with this phenomenon. The same is found for ENSO, with a positively correlated region appearing in the eastern part of Spain, while the rest of the peninsula remains insensitive. The correlation between ENSO and Iberian rainfall has increased towards the end of the present century, with strong positive signals spanning over half of the area studied. The percentage of springtime variability due to ENSO has similarly increased, reaching up to 50% in certain areas. We also show how there are outstanding climatic sensors of these phenomena such as Lake Gallocanta, which manifests a positive response to ENSO while appears insensitive to NAO. Common long-term patterns are observed between SOI and an inferred lake level series, suggesting a constant influence of the low-frequency component of ENSO throughout the period considered. Lake drying phases every 14 years reflect the impact of this signal, approximately every four ENSO events. Received: 6 June 1996/Accepted: 30 October 1996  相似文献   

5.
Huang  Ruping  Chen  Shangfeng  Chen  Wen  Yu  Bin  Hu  Peng  Ying  Jun  Wu  Qiaoyan 《Climate Dynamics》2021,56(11):3643-3664

Compared to the zonal-mean Hadley cell (HC), our knowledge of the characteristics, influence factors and associated climate anomalies of the regional HC remains quite limited. Here, we examine interannual variability of the northern poleward HC edge over western Pacific (WPHCE) during boreal winter. Results suggest that interannual variability of the WPHCE is impacted by the El Niño-Southern Oscillation (ENSO) Modoki, North Pacific Oscillation (NPO) and North Atlantic Oscillation (NAO). The WPHCE tends to shift poleward during negative phase of the ENSO Modoki, and positive phases of the NPO and NAO, which highlights not merely the tropical forcing but also the extratropical signals that modulate the WPHCE. ENSO modoki, NPO and NAO modulate the WPHCE via inducing atmospheric anomalies over the western North Pacific. We further investigate the climatic impacts of the WPHCE on East Asia. The poleward shift of the northern descending branch of the WPHC results in anomalous upward (downward) motions and upper-level divergence (convergence) anomalies over south-central China (northern East-Asia), leading to increased (decreased) rainfall there. Moreover, pronounced cold surface air temperature anomalies appear over south-central China when the sinking branch of the WPHC moves poleward. Based on the temperature diagnostic analysis, negative surface temperature tendency anomalies over central China are mostly attributable to the cold zonal temperature advection and ascent-induced adiabatic cooling, while the negative anomalies over South China are largely due to the cold meridional temperature advection. These findings could improve our knowledge of the WPHCE variability and enrich the knowledge of forcing factors for East Asian winter climate.

  相似文献   

6.
A large ensemble modeling experiment with the Melbourne University General Circulation Model is presented. Thirty 17-year-long independent simulations were performed. All integrations were forced by the same observed sea surface temperatures, obtained from the Atmospheric Model Intercomparison Project II. The simulations were analyzed to assess the sensitivity of the North Atlantic Oscillation (NAO) to the El Niño/Southern Oscillation (ENSO) polarity. The results show signals of the ENSO phases both in the mean strength of the NAO as well as in its internal variability. During the cold ENSO phase, the probability density function of the NAO index presents a small but positive mean value, whereas it is negative during the warm ENSO phase. Also, the NAO variability associated with each ENSO phase shows a different behavior: during the warm phase the probability density function of the NAO index presents a larger variance and suggests a bimodality, whereas no bimodality is suggested in the cold phase.  相似文献   

7.
Interdependencies between the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), and Indian monsoon (IM) phenomena are investigated from data over the period of 1871-2013. Along with the bivariate analysis of directional couplings between ENSO, NAO, and IM, their trivariate analysis was carried out. To detect the seasonal features of directional couplings using Wiener-Granger causality, various temporal resolutions of the data ranging from a month to a half-year are used. Taking into account the seasonality of the processes, the influence of ENSO on NAO is detected which has different signs in winter and summer. The influence of NAO on ENSO is revealed only in the trivariate analysis. The strongest couplings are observed between ENSO and IM. All the detected couplings can be divided into two groups: the "fast" (with the characteristic time from a month to several months) and "slow" (with the characteristic time of a half-year or longer) ones. The fast couplings include bidirectional couplings between IM and ENSO in summer and autumn when the summer pattern of NAO influences the patterns of ENSO and IM in the next season. The slow couplings include the effects of ENSO on NAO and on the winter pattern of IM as well as the influence of IM on the summer pattern NAO.  相似文献   

8.
Jie Song  Chongyin Li  Wen Zhou 《Climate Dynamics》2014,42(3-4):1097-1111
Using reanalysis data, we find that the downstream-propagating quasi-stationary Rossby wave train associated with the North Atlantic Oscillation (NAO) generally propagates along a high (low)-latitude pathway during warm (cold) El Niño-Southern Oscillation (ENSO) boreal winters. Consistent with the different propagation directions of the NAO-related downstream wave train, during the warm (cold) ENSO winters, the NAO is associated with significant 300 hPa geopotential height anomalies over eastern Siberia (the Arabian Sea, the east coast of Asia at around 40°N, and the North Pacific), and the near-surface air temperature perturbations associated with the NAO over the high latitudes of Asia are relatively strong (weak). Based on these differences, we argue that the NAO has two distinct types of downstream influence: a high-latitude type and a low-latitude type. Furthermore, we argue that the two types of NAO’s downstream influence are modulated by the intensity of the subtropical potential vorticity (PV) meridional gradient over Africa. When this gradient is weak (strong), as in the warm (cold) ENSO winters, the NAO’s downstream influence tends to be of the high (low)-latitude type. These results are further supported by analysis of intraseasonal NAO events. We separate NAO events into two categories in terms of the intensity of the subtropical PV gradient over Africa. Composites of the NAO events accompanied by a weak (strong) subtropical PV gradient show that the NAO-related downstream wave train tends to propagate along a high (low)-latitude pathway.  相似文献   

9.
The relationship between five teleconnection patterns (North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic/Western Russian (EAWR) pattern, Scandinavian (SCAND) pattern, and El Niño Southern Oscillation (ENSO)) and the frequency of occurrence of days (per month) with extreme precipitation in the Euro-Mediterranean region is investigated with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data. To quantify the teleconnection–precipitation relationships over the Euro-Mediterranean region, linear correlations are calculated between the monthly teleconnection indices for the five patterns and time series at each grid point of the monthly frequency of days with extreme precipitation, focusing on daily precipitation amounts that exceed a particular threshold value (a 90 % threshold is used). To evaluate dynamical processes, the teleconnection indices are also correlated with the frequencies of days with extreme values of dynamic tropopause pressure and precipitable water. The former quantity is used as a proxy for potential vorticity intrusions and the latter to identify regions of enhanced moisture. The results of this analysis indicates positive, statistically significant correlations between the NAO, AO, and SCAND indices and the frequency of extreme precipitation in the western Mediterranean; positive (negative) correlations between the EAWR index and the extreme precipitation frequency in the eastern (western) Mediterranean; and a positive correlation between the Niño3.4 index and the extreme precipitation frequency over the Iberian Peninsula and the Middle East. For all of the teleconnection patterns other than ENSO, the dynamic tropopause pressure correlation patterns resemble those for the precipitation. In contrast, similar precipitation and precipitable water correlation patterns are observed only for ENSO. These findings suggest that the teleconnections affect the interannual variation of the frequency of days with extreme precipitation over a large part of the Euro-Mediterranean region through their impact on the spatial distribution of regions with enhanced potential vorticity and air moisture.  相似文献   

10.
淮河流域夏季降水异常与若干气候因子的关系   总被引:5,自引:2,他引:3       下载免费PDF全文
基于旋转经验正交函数分解 (REOF) 方法探讨淮河流域1961—2010年夏季降水与厄尔尼诺/南方涛动 (ENSO)、北大西洋涛动 (NAO)、印度洋偶极子 (IOD)、太平洋年代际振荡 (PDO) 之间的关系,并进一步分析各气候因子不同位相单独以及联合对淮河流域夏季降水的影响。结果表明:淮河流域夏季降水与ENSO,PDO,NAO,IOD等气候因子具有较稳定的相关性,其中,PDO和IOD是影响淮河流域夏季降水的关键因子,且PDO与夏季降水呈显著负相关关系;各气候因子的冷暖位相单独及联合对淮河流域夏季降水的影响不同,PDO的冷期以及NAO,IOD冷位相使流域北部的夏季降水量呈显著增加趋势,PDO分别联合ENSO,NAO和IOD的冷、暖位相对流域北部地区和淮河上游地区的夏季降水影响显著。  相似文献   

11.
Moisture exchange is studied via composites for seven dry years and five wet years over India (with negative and positive summer precipitation anomalies of 10% above normal), during which a warm or a cold El Niño/Southern Oscillation phase developed in the succeeding fall and winter months. Analysis is based on the 1950–1999 monthly mean NCEP/NCAR reanalysis data. Specific features of the formation of the tropospheric integral moisture content anomalies, a major heat source, in the tropical Indian and Pacific oceans in ENSO years are shown. The zonal and meridional moisture transport and the moisture flux convergence are shown to play an important role in this process. Also, the important role of large-scale moisture exchange in a general chain of the tropical climate system anomalies in ENSO years is demonstrated.  相似文献   

12.
A nonlinear projection of the tropical Pacific sea surface temperature anomalies (SSTA) onto the Northern Hemisphere winter sea level pressure (SLP) anomalies by neural networks (NN) was performed to investigate the nonlinear association between El Niño-Southern Oscillation (ENSO) and the Euro-Atlantic winter climate. While the linear impact of ENSO on the Euro-Atlantic winter SLP is weak, the NN projection reveals statistically significant SLP anomalies over the Euro-Atlantic sector during both extreme cold and warm ENSO episodes, suggesting that the Euro-Atlantic climate mainly responds to ENSO nonlinearly. The nonlinear response, mainly a quadratic response to the SSTA, reveals that regardless of the sign of the SSTA, positive SLP anomalies are found over the North Atlantic, stretching from eastern Canada to Europe (with anomaly center located just northwestward of Portugal), and negative anomalies centered over Scandinavia and Norwegian Sea, consistent with the excitation of the positive North Atlantic Oscillation pattern.  相似文献   

13.
Large-scale atmospheric patterns are examined on orbital timescales using a climate model which explicitly resolves the atmosphere–ocean–sea ice dynamics. It is shown that, in contrast to boreal summer where the climate mainly follows the local radiative forcing, the boreal winter climate is strongly determined by modulation of circulation modes linked to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) and the Northern/Southern Annular Modes. We find that during a positive phase of the AO/NAO the convection in the tropical Pacific is below normal. The related atmospheric circulation provides an atmospheric bridge for the precessional forcing inducing a non-uniform temperature anomalies with large amplitudes over the continents. We argue that this is important for mechanisms responsible for multi-millennial climate variability and glacial inception.  相似文献   

14.
The synoptic-scale winter precipitation variations over southeastern China (22°–32°N, 105°–125°E) and their association with the North Atlantic Oscillation (NAO) during 1951–2007 are investigated in this paper. The variability of wintertime precipitation is characterized by meridional displacement of its maximum center. Two precipitation regimes, with maximum centers located over the Yangtze and Pearl River basins, are identified via cluster analysis. Time-lagged analyses suggest that the two precipitation regimes are connected with the decaying phases of positive NAO (NAO+) events of different amplitudes. A strong (medium) NAO+ event is defined as one when the maximum amplitude of the NAO index exceeds 1.0 (in the range of 0.7–1.0) for at least 4 consecutive days and drops to less than 0.3 within 7 days following the peak index. After the peak of a strong NAO+, southerly winds expand northward to the Yangtze River (about 30°N), a northeast–southwest-tilted trough migrates to east of Lake Baikal, and cold air intrudes into central eastern China; thus, precipitation is strengthened over the Yangtze River basin where warm and cold air masses converge. In comparison, during the decaying phase of medium NAO+ events, the southerly winds are relatively weak, and precipitation tends to be enhanced at lower latitudes (around 25°N). Further analysis indicates that downstream Rossby-wave propagation may account for the latitudinal expansion of the southerly wind anomalies over the eastern coastal area of China during the decaying phase of NAO+ events of different strengths.  相似文献   

15.
ENSO influence on Europe during the last centuries   总被引:2,自引:0,他引:2  
El Niño/Southern Oscillation (ENSO) affects climate not only in the Pacific region and the tropics, but also in the North Atlantic-European area. Studies based on twentieth-century data have found that El Niño events tend to be accompanied in late winter by a negative North Atlantic Oscillation index, low temperatures in northeastern Europe and a change in precipitation patterns. However, many questions are open, for example, concerning the stationarity of this relation. Here we study the relation between ENSO and European climate during the past 500 years based on statistically reconstructed ENSO indices, early instrumental station series, and reconstructed fields of surface air temperature, sea-level pressure, precipitation, and 500 hPa geopotential height. After removing years following tropical volcanic eruptions (which systematically mask the ENSO signal), we find a consistent and statistically significant ENSO signal in late winter and spring. The responses to El Niño and La Niña are close to symmetric. In agreement with studies using twentieth-century data only, the ENSO signal in precipitation is different in fall than in late winter. Moving correlation analyses confirm a stationary relationship between ENSO and late winter climate in Europe during the past 300 years. However, the ENSO signal is modulated significantly by the North Pacific climate. A multi-field cluster analysis for strong ENSO events during the past 300 years yields a dominant pair of clusters that is symmetric and represents the ‘classical’ ENSO effects on Europe.  相似文献   

16.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

17.
Future climate trends for the Southwestern US, based on the climate models included in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, project a more arid climate in the region during the 21st century. However, future climate variability associated with El Niño Southern Oscillation (ENSO)—an important driver for winter climate variability in the region—have not been addressed. In this work we evaluate future winter ENSO projections derived from two selected IPCC models, and their effect on Southwestern US climate. We first evaluate the ability of the IPCC coupled models to represent the climate of the Southwest, selecting the two models that best capture seasonal precipitation and temperature over the region and realistically represent ENSO variability (Max Planck Institute’s ECHAM5 and the UK Met Office HadCM3). Our work shows that the projected future aridity of the region will be dramatically amplified during La Niña conditions, as anomalies over a drier mean state, and will be characterized by higher temperatures (~0.5°C) and lower precipitation (~3 mm/mnt) than the projected trends. These results have important implications for water managers in the Southwest who must prepare for more intense winter aridity associated with future ENSO conditions.  相似文献   

18.
In this study, winter precipitation variability associated with the El Niño-Southern Oscillation (ENSO) over the Korean Peninsula was investigated using a 5-pentad running mean data because significant correlation pattern cannot be revealed using seasonal-mean data. It was found a considerably significant positive correlation between Niño3 sea-surface temperature and precipitation during early winter (from Mid-November to early-December), when the correlation coefficient is close to 0.8 in early-December; the correlation is distinctively weakened during late winter. It is demonstrated that such sudden intraseasonal change in relation to ENSO is associated with the presence of anticyclonic flow over the Kuroshio extension region (Kuroshio anticyclone). In early winter, there is strong southerly wind over the Korean Peninsula, which is induced by the Philippine Sea anticyclone and Kuroshio anticyclone. However, in January, although the Philippine Sea anticyclone develops further, the Kuroshio anticyclone suddenly disappears; as a result, the impact of ENSO is considerably weakened over the Korean Peninsula. These results indicate that the Kuroshio anticyclone during El Niño peak phase plays a critical role by strongly affecting Northeast Asia climate, including the Korean Peninsula. In addition, it is also found that there are distinctive interdecadal changes of the relationship between ENSO and precipitation over the Korean Peninsula. In particular, the strong correlation in early winter is clearer in the recent 30 years than that in the previous period of 1950–1979.  相似文献   

19.
It is known that the wintertime North Pacific Oscillation (NPO) is an important extratropical forcing for the occurrence of an El Ni?o?Southern Oscillation (ENSO) event in the subsequent winter via the “seasonal footprinting mechanism” (SFM). This study reveals that the Atlantic Multidecadal Oscillation (AMO) can notably modulate the relationship between the winter NPO and the following winter ENSO. During the negative AMO phase, the winter NPO has significant impacts on the following winter ENSO via the SFM. In contrast, the influence of the winter NPO on ENSO is not robust at all during the positive AMO phase. Winter NPO-generated westerly wind anomalies over the equatorial western Pacific during the following spring are much stronger during negative than positive AMO phases. It is suggested that the AMO impacts the winter NPO-induced equatorial westerly winds over the western Pacific via modulating the precipitation climatology over the tropical central Pacific and via modulating the connection of the winter NPO with spring sea surface temperature in the tropical North Atlantic.  相似文献   

20.
Using long-term observational data and numerical model experiments, the combined effect of the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the variability of the East Asian winter monsoon is examined. In the observations, it is found that when the ENSO and PDO are in-phase combinations (i.e., El Niño/positive PDO phase and La Niña/negative PDO phase), a negative relationship between ENSO and East Asian winter monsoon is significantly intensified. In other words, when El Niño (La Niña) occurs with positive (negative) PDO phase, anomalous warm (cold) temperatures are dominant over the East Asian winter continent. On the other hand, there are no significant temperature anomalies when the ENSO and PDO are out-of-phase combinations (i.e., El Niño/negative PDO phase and La Niña/positive PDO phase). Further analyses indicate that the anticyclone over the western North Pacific including the East Asian marginal seas plays an essential role in modulating the intensity of the East Asian winter monsoon under the changes of ENSO–PDO phase relationship. Long-lasting high pressure and warm sea surface temperature anomalies during the late fall/winter and following spring over the western North Pacific, which appear as the El Niño occurs with positive PDO phase, can lead to a weakened East Asian winter monsoon by transporting warm and wet conditions into the East Asian continent through the southerly wind anomalies along the western flank of the anomalous high pressure, and vice versa as the La Niña occurs with negative PDO phase. In contrast, the anomalous high pressure over the western North Pacific does not show a prominent change under the out-of-phase combinations of ENSO and PDO. Numerical model experiments confirm the observational results, accompanying dominant warm temperature anomalies over East Asia via strong anticyclonic circulation anomalies near the Philippine Sea as the El Niño occurs with positive PDO phase, whereas such warming is weakened as the El Niño occurs with negative PDO phase. This result supports the argument that the changes in the East Asian winter monsoon intensity with ENSO are largely affected by the strength of the anticyclone over the western North Pacific, which significantly changes according to the ENSO–PDO phase relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号